Яке останнє число у світі. Яке воно – найбільше число? Які вони, числа-гіганти

Колись я прочитав одну трагічну розповідь, де розповідається про чукча, якого полярники навчили рахувати та записувати цифри. Магія чисел настільки вразила його, що він вирішив записати в подарованому полярниками зошити абсолютно всі існуючі у світі числа поспіль, починаючи з одиниці. Чукча закидає всі свої справи, перестає спілкуватися навіть із своєю дружиною, не полює більше на нерпу та тюленів, а все пише і пише в зошит числа. Так минає рік. Зрештою, зошит закінчується і чукча розуміє, що він зміг записати лише малу частину всіх чисел. Він гірко плаче і в розпачі спалює свій списаний зошит, щоб знову почати жити простим життям рибалки, не думаючи більше про таємничу нескінченність чисел.

Не будемо повторювати подвиг цього чукчі і намагатися знайти найбільше число, тому що будь-якому числу достатньо лише додати одиницю, щоб отримати число ще більше. Задамося хоч і схожим, але іншим питанням: яке чисел, що мають власну назву, найбільше?

Очевидно, що хоч самі числа нескінченні, власних назву них не так вже й багато, тому що більшість із них задовольняються іменами, складеними з менших чисел. Так, наприклад, числа 1 і 100 мають власні назви "одиниця" і "сто", а назва числа 101 вже складена ("сто один"). Зрозуміло, що в кінцевому наборі чисел, яких людство нагородило власним ім'ям, має бути якесь найбільше. Але як воно називається і чому воно рівне? Давайте ж, спробуємо розібратися в цьому і знайдемо, зрештою, це найбільше число!

Число

Латинське кількісне числове

Російська приставка


«Коротка» та «довга» шкала

Історія сучасної системи найменування великих чисел веде початок із середини XV століття, коли в Італії стали користуватися словами «мільйон» (дослівно – більша тисяча) для тисячі у квадраті, «бімільйон» для мільйона в квадраті та «тримільйон» для мільйона в кубі. Про цю систему ми знаємо завдяки французькому математику Ніколя Шюке (Nicolas Chuquet, бл. 1450 - бл. 1500): у своєму трактаті "Наука про числа" (Triparty en la science des nombres, 1484) він розвинув цю ідею, запропонувавши далі скористатися кількісними числами (див. таблицю), додаючи їх до закінчення «-ілліон». Так, «бімільйон» у Шюке перетворився на більйон, «тримільйонний» на трильйон, а мільйон у четвертій мірі став «квадрилліоном».

У системі Шюке число 109, що знаходилося між мільйоном і більйоном, не мало власної назви і називалося просто "тисяча мільйонів", аналогічно 1015 називалося "тисяча більйонів", 1021 - "тисяча трильйонів" і т.д. Це було не дуже зручно, і в 1549 французький письменник і вчений Жак Пелетьє (Jacques Peletier du Mans, 1517-1582) запропонував назвати такі «проміжні» числа за допомогою тих же латинських префіксів, але закінчення «-ілліард». Так, 10 9 стало називатися "мільярдом", 10 15 - "біліардом", 10 21 - "трільярдом" і т.д.

Система Шюке-Пелетьє поступово стала популярною і їй стали користуватися по всій Європі. Однак у XVII столітті виникла несподівана проблема. Виявилося, деякі учені чомусь стали плутатися і називати число 10 9 не «мільярдом» чи «тисячю мільйонів», а «більйоном». Незабаром ця помилка швидко поширилася, і виникла парадоксальна ситуація — «більйон» став одночасно синонімом «мільярда» (109) та «мільйона мільйонів» (1018).

Ця плутанина тривала досить довго і призвела до того, що США створили свою систему найменування великих чисел. За американською системою назви чисел будуються так само, як у системі Шюке, — латинський префікс та закінчення «ілліон». Проте величини цих чисел різняться. Якщо в системі Шюке назви із закінченням "ілліон" отримували числа, які були ступенями мільйона, то в американській системі закінчення "-ілліон" отримали ступеня тисячі. Тобто тисяча мільйонів (1000 3 = 10 9) почала називатися «більйоном», 1000 4 (10 12) - «трильйоном», 1000 5 (10 15) - «квадрилліоном» і т.д.

Стара ж система найменування великих чисел продовжувала використовуватися в консервативній Великій Британії і стала в усьому світі називатися «британською», незважаючи на те, що вона була придумана французами Шюке та Пелетьє. Однак у 1970-х роках Великобританія офіційно перейшла на «американську систему», що призвело до того, що називати одну систему американською, а іншу британською стало дивно. У результаті зараз американську систему зазвичай називають «короткою шкалою», а британську систему або систему Шюке-Пелетьє — «довгою шкалою».

Щоб не заплутатися, підіб'ємо проміжний підсумок:

Назва числа

Значення за «короткою шкалою»

Значення за «довгою шкалою»

Мільярд

Білліард

Трильйон

Трильярд

Квадрильйон

Квадрільярд

Квінтильйон

Квінтільярд

Секстильйон

Секстильярд

Септилліон

Септільярд

Октільйон

Октільярд

Нонільйон

Нонільярд

Дециліон

Децильярд


Коротка шкала найменування використовується зараз у США, Великобританії, Канаді, Ірландії, Австралії, Бразилії та Пуерто-Ріко. У Росії, Данії, Туреччині та Болгарії також використовується коротка шкала, за винятком того, що число 109 називається не «більйон», а «мільярд». Довга ж шкала нині продовжує використовуватися більшості інших держав.

Цікаво, що в нашій країні остаточний перехід до короткої шкали відбувся лише у другій половині ХХ століття. Так, наприклад, ще Яків Ісидорович Перельман (1882-1942) у своїй «Захоплюючій арифметиці» згадує паралельне існування у СРСР двох шкал. Коротка шкала, згідно з Перельманом, використовувалася в життєвому побуті та фінансових розрахунках, а довга — у наукових книгах з астрономії та фізики. Однак зараз використовувати в Росії довгу шкалу неправильно, хоча цифри там виходять і більші.

Але повернемося до пошуку найбільшого числа. Після дециліону назви чисел виходять шляхом поєднання приставок. Так виходять такі числа як ундециліон, дуодециліон, тредециліон, кваттордециліон, квіндециліон, сексдециліон, септемдециліон, октодециліон, новемдециліон і т.д. Однак ці назви нам уже не цікаві, тому що ми домовилися знайти найбільше з власною нескладною назвою.

Якщо ж ми звернемося до латинської граматики, то виявимо, що нескладних назв для чисел більше десяти у римлян було всього три: viginti – «двадцять», centum – «сто» та mille – «тисяча». Для чисел більше, ніж «тисяча», своїх назв у римлян не було. Наприклад, мільйон (1 000 000) римляни називали "decies centena milia", тобто "десять разів по сотні тисяч". За правилом Шюке, ці три латинські числівники, що залишилися, дають нам такі назви для чисел як «вігінтильйон», «центильйон» і «міллеілліон».


Отже, ми з'ясували, що за «короткою шкалою» максимальна кількість, яка має власну назву і не є складовою з менших чисел, — це «міллеілліон» (10 3003). Якби в Росії була б прийнята «довга шкала» найменування чисел, то найбільшим числом із власною назвою виявився б «міллєліард» (106003).

Проте існують назви і ще більших чисел.

Числа поза системою

Деякі числа мають власну назву, без зв'язку з системою найменування за допомогою латинських префіксів. І таких чисел чимало. Можна, наприклад, згадати число e, Число «пі», дюжину, число звіра та ін. Однак так як нас зараз цікавлять великі числа, то розглянемо лише ті числа з власним нескладним назвою, які більше мільйона.

До XVII століття на Русі застосовувалася власна система найменування чисел. Десятки тисяч називалися «темрявами», сотні тисяч – «легіонами», мільйони – «леодрами», десятки мільйонів – «воронами», а сотні мільйонів – «колодами». Цей рахунок до сотень мільйонів називався «малим рахунком», а деяких рукописах авторами розглядався і «великий рахунок», у якому вживалися самі назви великих чисел, але з іншим смыслом. Так, «темрява» означала вже не десять тисяч, а тисячу тисяч (106), «легіон» — темряву тем (1012); "Леодр" - легіон легіонів (10 24), "ворон" - леодр леодрів (10 48). «Колодою» ж у великому слов'янському рахунку чомусь називали не «ворон воронів» (1096), а лише десять «воронів», тобто 1049 (див. таблицю).

Назва числа

Значення в «малому рахунку»

Значення у «великому рахунку»

Позначення

Ворон (брехня)


Число 10 100 також має власну назву і вигадав його дев'ятирічний хлопчик. А справа була така. У 1938 році американський математик Едвард Кеснер (Edward Kasner, 1878-1955) гуляв парком з двома своїми племінниками і обговорював з ними великі числа. У ході розмови зайшла мова про кількість зі ста нулями, яка не мала власної назви. Один із племінників, дев'ятирічний Мілтон Сіротта (Milton Sirott), запропонував назвати це число «гуголом» (googol). В 1940 Едвард Кеснер спільно з Джеймсом Ньюманом написав науково-популярну книгу «Математика і уява», де і розповів любителям математики про число гугол. Ще ширшу популярність гугол отримав наприкінці 1990-х, завдяки названій на честь нього пошуковій машині Google.

Назва для ще більшого числа, ніж гугол, виникла в 1950 завдяки батькові інформатики Клоду Шеннону (Claude Elwood Shannon, 1916-2001). У своїй статті "Програмування комп'ютера для гри в шахи" він спробував оцінити кількість можливих варіантівшахова гра. Згідно з ним, кожна гра триває в середньому 40 ходів і на кожному ході гравець робить вибір у середньому з 30 варіантів, що відповідає 900 40 (приблизно 10 118) варіантам гри. Ця робота стала широко відомою, і це число стало називатися «числом Шеннона».

У відомому буддійському трактаті Джайна-сутри, що відноситься до 100 року до н. Вважається, що цьому числу дорівнює кількість космічних циклів, необхідних для набуття нірвани.

Дев'ятирічний Мілтон Сіротта увійшов в історію математики не тільки тим, що придумав число гугол, але й тим, що одночасно з ним запропонував ще одне число - "гуголплекс", яке дорівнює 10 ступенем "гугол", тобто одиниці з гуголом нулів.

Ще два числа, більші, ніж гуголплекс, було запропоновано південноафриканським математиком Стенлі Скьюзом (Stanley Skewes, 1899-1988) за підтвердження гіпотези Рімана. Перше число, яке пізніше стали називати «першим числом Скьюза», одно eу ступені eу ступені eступенем 79, тобто e e e 79 = 10 10 8,85.10 33 . Однак «друге число Скьюза» ще більше і становить 1010101000.

Очевидно, що чим більше серед ступенів у ступенях, тим складніше записувати числа і розуміти їх значення при читанні. Мало того, можна придумати такі числа (і вони, до речі, вже придумані), коли ступені ступенів просто не поміщаються на сторінку. Так що на сторінку! Вони не вмістяться навіть у книгу розміром із весь Всесвіт! У такому разі постає питання, як же такі числа записувати. Проблема, на щастя, можна вирішити, і математики розробили кілька принципів для запису таких чисел. Щоправда, кожен математик, хто ставив цю проблему, придумував свій спосіб записи, що призвело до існування кількох не пов'язаних один з одним способів для запису великих чисел — це нотації Кнута, Конвея, Штейнгауза та інших. З деякими нам зараз належить розібратися.

Інші нотації

У 1938 році, в той же рік, коли дев'ятирічний Мілтон Сіротта придумав числа гугол і гуголплекс, у Польщі вийшла книжка про цікаву математику "Математичний калейдоскоп", написана Гуго Штейнгаузом (Hugo Dionizy Steinhaus, 1887-1972). Ця книга стала дуже популярною, витримала безліч видань і була перекладена багатьма мовами, у тому числі англійською та російською. У ній Штейнгауз, обговорюючи великі числа, пропонує простий спосіб їх запису, використовуючи три геометричні фігури — трикутник, квадрат і коло:

«nу трикутнику» означає « n n»,
« nу квадраті» означає « nв nтрикутниках»,
« nу колі» означає « nв nквадратах».

Пояснюючи цей спосіб запису, Штейнгауз вигадує число "мега", що дорівнює 2 у колі і показує, що воно дорівнює 256 у "квадраті" або 256 у 256 трикутниках. Щоб підрахувати його, треба 256 звести в ступінь 256, число 3,2.10 616, що вийшло, звести в ступінь 3,2.10 616 , потім число, що вийшло, звести в ступінь отриманого числа і так далі зводити в ступінь 256 разів. Наприклад, калькулятор у MS Windows не може підрахувати через переповнення 256 навіть у двох трикутниках. Приблизно це величезна кількість становить 10 10 2.10 619 .

Визначивши число "мега", Штейнгауз пропонує вже читачам самостійно оцінити інше число - "медзон", що дорівнює 3 у колі. В іншому виданні книги Штейнгауз замість медзона пропонує оцінити ще більше — «мегістон», що дорівнює 10 у колі. Слідом за Штейнгаузом я також порекомендую читачам на якийсь час відірватися від цього тексту і самим спробувати записати ці числа за допомогою звичайних ступенів, щоб відчути їхню гігантську величину.

Втім, є назви і для б пробільших чисел. Так, канадський математик Лео Мозер (Leo Moser, 1921-1970) доопрацював нотацію Штейнгауза, яка була обмежена тим, що, якби потрібно було записати числа багато більших мегістонів, то виникли б труднощі і незручності, тому що довелося б малювати безліч кіл один всередині іншого. Мозер запропонував після квадратів малювати не кола, а п'ятикутники, потім шестикутники і таке інше. Також він запропонував формальний запис цих багатокутників, щоб можна було записувати числа, не малюючи складних малюнків. Нотація Мозера виглядає так:

« nтрикутнику» = n n = n;
« nу квадраті» = n = « nв nтрикутниках» = nn;
« nу п'ятикутнику» = n = « nв nквадратах» = nn;
« nв k+ 1-кутнику» = n[k+1] = « nв n k-кутники» = n[k]n.

Таким чином, за нотацією Мозера штейнгаузовський "мега" записується як 2, "медзон" як 3, а "мегістон" як 10. Крім того, Лео Мозер запропонував називати багатокутник з числом сторін рівним меге - "мегагоном". І запропонував число "2 в мегагоні", тобто 2. Це число стало відомим як число Мозер або просто як "мозер".

Але навіть і «мозер» не найбільше. Отже, найбільшим числом, яке коли-небудь застосовувалося в математичному доказі, є «число Грема». Вперше це число було використане американським математиком Рональдом Гремом (Ronald Graham) у 1977 році за доказом однієї оцінки в теорії Рамсея, а саме при підрахунку розмірності певних n-мірних біхроматичних гіперкубів Популярність же число Грема одержало лише після розповіді про нього в книзі Мартіна Гарднера, що вийшла в 1989 році, «Від мозаїк Пенроуза до надійних шифрів».

Щоб пояснити, наскільки велике число Грема, доведеться пояснити ще один спосіб запису великих чисел, введений Дональдом Кнутом в 1976 році. Американський професор Дональд Кнут придумав поняття надступеня, яке запропонував записувати стрілками, спрямованими вгору:

Думаю, що все зрозуміло, тому повернемося до Грема. Рональд Грем запропонував так звані G-числа:

Ось число G64 і називається числом Грема (позначається воно часто просто як G). Це число є найбільшим відомим у світі числом, використаним у математичному доказі, і занесено навіть до «Книги рекордів Гіннеса».

І на останок

Написавши цю статтю, не можу не втриматися від спокуси і не вигадати своє число. Нехай це число називатиметься « стасплекс» і дорівнюватиме числу G 100 . Запам'ятайте його, і коли ваші діти будуть запитувати, яке найбільше у світі число, кажіть їм, що це число називається стасплекс.

Новини партнерів

Ще в четвертому класі мене зацікавило питання: "А як називаються числа більше мільярда? І чому?". З того часу я довго шукав всю інформацію з цього питання і збирав її по крихтах. Але з появою доступу до Інтернету, пошук значно прискорився. Тепер я представляю всю знайдену мною інформацію, щоб інші могли відповісти на запитання: "Як називаються великі і дуже великі числа?".

Трішки історії

Південні та східні слов'янські народи для запису чисел користувалися абетковою нумерацією. Причому у російських роль цифр грали в повному обсязі букви, лише ті, які є у грецькому алфавіті. Над літерою, що позначала цифру, ставився спеціальний значок "титло". При цьому числові значення літер зростали в тому ж порядку, в якому йшли літери в грецькому алфавіті (порядок літер слов'янського алфавіту був дещо інший).

У Росії її слов'янська нумерація збереглася остаточно 17 століття. За Петра I взяла гору так звана "арабська нумерація", якою ми користуємося і зараз.

У назвах чисел також відбувалися зміни. Наприклад, до 15 століття число "двадцять" позначалося як "два десяти" (два десятки), але потім скоротилося для більш швидкої вимови. До 15 століття число "сорок" позначалося словом "чотиридесяті", а в 15-16 століттях це слово було витіснене словом "сорок", яке вихідно позначало мішок, в який містилося 40 білиць чи соболиних шкурок. Про походження слова "тисяча" є два варіанти: від старої назви "товста сто" або від модифікації латинського слова centum - "сто".

Назва "мільйон" вперше з'явилося в Італії в 1500 р. і утворилося додаванням збільшувального суфікса до "міллі" - тисяча (тобто позначало "велику тисячу"), в російську мову воно пронизало пізніше, а до цього те ж значення в російською мовою позначалося числом "леодр". Слово "мільярд" увійшло у вжиток лише з часу франко-пруссої війни (1871 р.), коли французам довелося сплатити Німеччині контрибуцію в 5 000 000 000 франків. Як і "мільйон" слово "мільярд" походить від кореня "тисяча" з добавкою італійського збільшувального суфікса. У Німеччині та Америці деякий час під словом "мільярд" мали на увазі число 100 000 000; цим пояснюється, що слово мільярдер в Америці стало використовуватися до того, як у будь-кого з багатіїв з'явилося 1000000000 доларів. У старовинній (XVIII ст.) "Арифметиці" Магницького наводиться таблиця назв чисел, доведена до "квадрильйона" (10^24, за системою через 6 розрядів). Перельман Я.І. у книзі "Цікава арифметика" наводяться назви великих чисел того часу, які дещо відрізняються від сьогоднішніх: септильйон (10^42), октальйон (10^48), нональйон (10^54), декальон (10^60), ендекальон (10^ 66), додекальон (10^72) і написано, що "далі назв немає".

Принципи побудови назв та список великих чисел
Всі назви великих чисел побудовані досить простим чином: спочатку йде латинське порядкове число, а в кінці до нього додається суфікс-ілліон. Виняток становить назву "мільйон", яка є назвою числа тисяча (mille) і збільшувального суфікса -ілліон. У світі існує два основні типи назв великих чисел:
система 3х+3 (де х - латинське порядкове числове) - ця система використовується в Росії, Франції, США, Канаді, Італії, Туреччині, Бразилії, Греції
та система 6х (де х – латинське порядкове числове) – ця система найбільш поширена у світі (наприклад: Іспанія, Німеччина, Угорщина, Португалія, Польща, Чехія, Швеція, Данія, Фінляндія). У ній відсутні проміжні 6х+3 закінчуються суфіксом -ілліард (з неї ми запозичували мільярд, який ще називається більйон).

Загальний список чисел, що використовуються в Росії, представляю нижче:

Число Назва Латинське чисельне Збільшуюча приставка СІ Зменшуюча приставка СІ Практичне значення
10 1 десять дека- деці- Число пальців на 2 руках
10 2 сто гекто- санти- Приблизно половина всіх держав Землі
10 3 тисяча кіло- мілі- Орієнтовна кількість днів у 3 роках
10 6 мільйон unus (I) мега- мікро- У 5 разів більше від кількості крапель у 10-літровому відері води
10 9 мільярд (більйон) duo (II) гіга- нано- Орієнтовна чисельність населення Індії
10 12 трильйон tres (III) тера- піко- 1/13 внутрішнього валового продукту Росії у рублях за 2003 рік
10 15 квадрильйон quattor (IV) пета- фемто- 1/30 довжини парсека в метрах
10 18 квінтильйон quinque (V) екса- атто- 1/18 числа зерен із легендарної нагороди винахіднику шахів
10 21 секстильйон sex (VI) зетта- цепто- 1/6 маси планети Земля в тоннах
10 24 септилліон septem (VII) йотта- йокто- Число молекул 37,2 л повітря
10 27 октиліон octo (VIII) неа- сито- Половина маси Юпітера у кілограмах
10 30 нонільйон novem (IX) деа- тредо- 1/5 числа всіх мікроорганізмів планети
10 33 дециліон decem (X) уна- рево- Половина маси Сонця у грамах

Вимова чисел, що йдуть далі, часто різняться.
Число Назва Латинське чисельне Практичне значення
10 36 андециліон undecim (XI)
10 39 дуодециліон duodecim (XII)
10 42 тредециліон tredecim (XIII) 1/100 від кількості молекул повітря Землі
10 45 кваттордециліон quattuordecim (XIV)
10 48 квіндециліон quindecim (XV)
10 51 сексдециліон sedecim (XVI)
10 54 септемдециліон septendecim (XVII)
10 57 октодециліон Стільки елементарних частинок на Сонці
10 60 новемдециліон
10 63 вигінтильйон viginti (XX)
10 66 анвігінтиліон unus et viginti (XXI)
10 69 дуовігінтильйон duo et viginti (XXII)
10 72 тревігінтильйон tres et viginti (XXIII)
10 75 кватторвігінтильйон
10 78 квінвігінтильйон
10 81 сексвігінтиліон Стільки елементарних частинок у всесвіті
10 84 септемвігінтиліон
10 87 октовігінтиліон
10 90 новемвігінтильйон
10 93 тригінтильйон triginta (XXX)
10 96 антригінтиліон
    ...
  • 10 100 - гугол (число вигадав 9-річний племінник американського математика Едварда Каснера)


  • 10 123 - квадрагінтіліон (quadraginta, XL)

  • 10153 - квінквагінтильйон (quinquaginta, L)

  • 10 183 - сексагінтиліон (sexaginta, LX)

  • 10 213 - септуагінтиліон (septuaginta, LXX)

  • 10 243 - октогінтильйон (octoginta, LXXX)

  • 10273 - нонагінтильйон (nonaginta, XC)

  • 10303 - центиліон (Centum, C)

Подальші назви можуть бути отримані або прямим або зворотним порядком латинських числівників (як правильно, не відомо):

  • 10 306 - анцентилліон або центунільйон

  • 10309 - дуоцентильйон або центдуолліон

  • 10 312 - третентіліон або центтрильйон

  • 10315 - кватторцентилліон або центквадрилліон

  • 10402 - третригінтацентилліон або центтретригінтильйон

Я вважаю, що найбільш правильним буде другий варіант написання, тому що він більше відповідає побудові чисельних в латинській мові і дозволяє уникнути двозначностей (наприклад у числі третентільйон, яке за першим написанням є і 10903 і 10312).
Числа далі:
Деякі літературні посилання:

  1. Перельман Я.І. "Цікава арифметика". - М: Триада-Літера, 1994, стор 134-140

  2. Вигодський М.Я. "Довідник з елементарної математики". - С-Пб., 1994, стор 64-65

  3. "Енциклопедія знань". - Упоряд. В.І. Короткевич. - С-Пб.: Сова, 2006, стор 257

  4. " Цікаво про фізику і математику " .- Бібліотечка Квант. вип. 50. - М: Наука, 1988, стор 50

“Я бачу скупчення невиразних чисел, які ховаються там, у темряві, за невеликою плямою світла, що дає свічка розуму. Вони шепочуться один з одним; змовляючись хто знає про що. Можливо, вони нас не дуже люблять за захоплення їхніх менших братиків нашими умами. Або, можливо, вони просто ведуть однозначний числовий спосіб життя, там, за межами нашого розуміння”.
Дуглас Рей

Продовжуємо нашу. Сьогодні у нас числа...

Кожного рано чи пізно мучить питання, а яке найбільше число. На запитання дитини можна відповісти мільйон. А що далі? Трильйон. А ще далі? Насправді, відповідь на питання які ж найбільші числа є простою. До найбільшого просто варто додати одиницю, як воно вже не буде найбільшим. Цю процедуру можна продовжувати до нескінченності.

А якщо ж поставити питання: яке найбільше число існує, і яке в нього власна назва?

Зараз ми всі дізнаємось...

Існують дві системи найменування чисел – американська та англійська.

Американська система побудована досить просто. Усі назви великих чисел будуються так: на початку йде латинське порядкове число, а в кінці до неї додається суфікс-ілліон. Виняток становить назву "мільйон", яка є назвою числа тисяча (лат. mille) та збільшувального суфікса -ілліон (див. таблицю). Так виходять числа - трильйон, квадриліон, квінтиліон, секстильйон, септиліон, октиліон, нонільйон та дециліон. Американська система використовується у США, Канаді, Франції та Росії. Дізнатися кількість нулів у числі, записаному за американською системою, можна за простою формулою 3 x + 3 (де x - латинське числівник).

Англійська система найменування найпоширеніша у світі. Їй користуються, наприклад, у Великій Британії та Іспанії, а також у більшості колишніх англійських та іспанських колоній. Назви чисел у цій системі будуються так: так: до латинського чисельного додають суфікс -ілліон, наступне число (у 1000 разів більше) будується за принципом - те саме латинське чисельне, але суфікс - -ілліард. Тобто після трильйона в англійській системі йде трильярд, а потім квадрилліон, за яким слідує квадрилліард і т.д. Таким чином, квадрильйон за англійською та американською системами – це зовсім різні числа! Дізнатися кількість нулів у числі, записаному за англійською системою і що закінчується суфіксом -ілліон, можна за формулою 6 x + 3 (де x - латинське числове) і за формулою 6 x +6 для чисел, що закінчуються на -ілліард.

З англійської системи в російську мову перейшло лише число мільярд (10 9 ), яке все ж таки було б правильніше називати так, як його називають американці — більйоном, так як у нас прийнята саме американська система. Але хто у нас у країні щось робить за правилами! ;-) До речі, іноді в російській мові вживають і слово трильярд (можете самі в цьому переконатися, запустивши пошук у Гуглі або Яндексі) і означає воно, зважаючи на все, 1000 трильйонів, тобто. квадрильйон.

Крім чисел, записаних з допомогою латинських префіксів за американської чи англійської системі, відомі і звані позасистемні числа, тобто. числа, які мають свої власні назви без жодних латинських префіксів. Таких чисел існує кілька, але докладніше про них розповім трохи пізніше.

Повернемося до запису за допомогою латинських чисельників. Здавалося б, що ними можна записувати числа до безкінечності, але це не зовсім так. Зараз поясню чому. Подивимося для початку як називаються числа від 1 до 10 33 :

І ось тепер виникає питання, а що далі. Що там за дециліоном? В принципі, можна, звичайно ж, за допомогою об'єднання приставок породити такі монстри, як: андециліон, дуодециліон, тредециліон, кваттордециліон, квіндециліон, сексдециліон, септемдециліон, октодециліон і новемдециліон, але це вже будуть нам складні чисел. Тому власних імен за цією системою, крім зазначених вище, ще можна отримати лише три — вігінтильйон (від лат.viginti- двадцять), центильйон (від лат.centum- Сто) і міліліон (від лат.mille- тисяча). Більше тисячі своїх назв для чисел у римлян не було (усі числа більше тисячі у них були складовими). Наприклад, мільйон (1 000 000) римляни називалиdecies centena milia, тобто "десять сотень тисяч". А тепер, власне, таблиця:

Таким чином, за подібною системою числа більше, ніж 10 3003 , Який мав би власну, непорівнянну назву отримати неможливо! Проте числа більше мільйона відомі - це ті самі позасистемні числа. Розкажемо нарешті про них.


Найменше таке число - це міріада (воно є навіть у словнику Даля), яке означає сотню сотень, тобто - 10 000. Слово це, щоправда, застаріло і практично не використовується, але цікаво, що широко використовується слово "міріади", яке означає зовсім не певну кількість, а незліченну, незліченну безліч чогось. Вважається, що слово міріада (англ. myriad) прийшло до європейських мов із стародавнього Єгипту.

Щодо походження цієї кількості існують різні думки. Одні вважають, що воно виникло в Єгипті, інші вважають, що воно народилося лише в Античній Греції. Як би там не було насправді, але популярність міріаду набула саме завдяки грекам. Міріада була назвою для 10 000, а для чисел більше десяти тисяч назв не було. Однак у замітці "Псаміт" (тобто обчислення піску) Архімед показав, як можна систематично будувати і називати скільки завгодно великі числа. Зокрема, розміщуючи в маковому зерні 10 000 (міріада) піщин, він знаходить, що у Всесвіті (куля діаметром у міріаду діаметрів Землі) помістилося б (у наших позначеннях) не більше ніж 10 63 піщин. Цікаво, що сучасні підрахунки кількості атомів у видимому Всесвіті призводять до 10 67 (Усього в міріаду разів більше). Назви чисел Архімед запропонував такі:
1 міріада = 10 4 .
1 ді-міріада = міріада міріад = 10 8 .
1 три-міріада = ді-міріада ді-міріад = 10 16 .
1 тетра-міріада = три-міріада три-міріад = 10 32 .
і т.д.



Гугол (від англ. Googol) - це число десять в сотому ступені, тобто одиниця зі ста нулями. Про "гугол" вперше написав у 1938 році у статті "New Names in Mathematics" у січневому номері журналу Scripta Mathematica американський математик Едвард Каснер (Edward Kasner). За його словами, назвати "гуголом" велику кількість запропонував його дев'ятирічний племінник Мілтон Сіротта (Milton Sirotta). Загальновідомим же це число стало завдяки пошуковій машині, названій на честь нього. Google. Зверніть увагу, що Google - це торгова марка, а googol - число.


Едвард Каснер (Edward Kasner).

В інтернеті ви часто можете зустріти згадку, що - але це не так.

У відомому буддійському трактаті Джайна-сутри, що відноситься до 100 до н.е., зустрічається число асанкхейя (від кит. асенці- незліченний), що дорівнює 10 140 . Вважається, що цьому числу дорівнює кількість космічних циклів, необхідних для набуття нірвани.


Гуголплекс (англ. googolplex) - число також придумане Каснер зі своїм племінником і означає одиницю з гуголом нулів, тобто 10 10100 . Ось як сам Каснер описує це "відкриття":


Words of wisdom are spoken by children at least as often as by scientists. Назву "googol" був введений за хлопцем (Dr. Kasner's nine-year-old nephew), який був поставлений до думки про дуже велику кількість, хіба що, 1 з високим ceroм після нього. Це те, що цей номер не був infinite, і там, де ви думаєте, що це буде мати назву. a googol, але це продовжується finite, as the inventor of name була quick to point out.

Mathematics and the Imagination(1940) Kasner і James R. Newman.

Ще більше, ніж гуголплекс число - число Скьюза (Skewes) було запропоновано Скьюзом в 1933 (Skewes). J. London Math. Soc. 8, 277-283, 1933.) при доказі гіпотези Ріманна, що стосується простих чисел. Воно означає eу ступені eу ступені eу ступені 79, тобто ee e 79 . Пізніше, Рієл (te Riele, H. J. J. "On the Sign of the Difference П(x)-Li(x)." Math. Comput. 48, 323-328, 1987) звів число Скьюза до ee 27/4 , Що приблизно дорівнює 8,185 · 10370 . Зрозуміло, що якщо значення числа Скьюза залежить від числа e, то воно не ціле, тому розглядати ми його не будемо, інакше довелося б згадати інші ненатуральні числа - число пи, e, і т.п.


Але слід зазначити, що є друге число Скьюза, що у математиці позначається як Sk2 , яке ще більше, ніж перше число Скьюза (Sk1 ). Друге число Скьюза, було запроваджено Дж. Скьюзом у тій статті для позначення числа, котрій гіпотеза Ріманна не справедлива. Sk2 дорівнює 1010 10103 , тобто 1010 101000 .

Як ви розумієте чим більше серед ступенів, тим складніше зрозуміти яке з чисел більше. Наприклад, подивившись на числа Ск'юза, без спеціальних обчислень практично неможливо зрозуміти яке з цих двох чисел більше. Таким чином, для надвеликих чисел користуватися ступенями стає незручно. Мало того, можна придумати такі числа (і вони вже придумані), коли ступені ступенів просто не влазять на сторінку. Так що на сторінку! Вони не влізуть, навіть у книгу, розміром із увесь Всесвіт! У такому разі постає питання як їх записувати. Проблема, як ви розумієте, можна вирішити, і математики розробили кілька принципів для запису таких чисел. Щоправда, кожен математик, хто ставив цю проблему вигадував свій спосіб записи, що призвело до існування кількох, не пов'язаних один з одним, способів для запису чисел — це нотації Кнута, Конвея, Стейнхауза та інших.

Розглянемо нотацію Х'юго Стенхауза (H. Steinhaus). Mathematical Snapshots 3rd edn. 1983), яка досить проста. Стейн хауз запропонував записувати великі числа всередині геометричних фігур- трикутника, квадрата та кола:

Стейнхауз придумав два нові надвеликі числа. Він назвав число Мега, а число Мегістон.

Математик Лео Мозер доопрацював нотацію Стенхауза, яка була обмежена тим, що якщо потрібно записувати числа набагато більше мегістону, виникали труднощі і незручності, тому що доводилося малювати безліч кіл один всередині іншого. Мозер запропонував після квадратів малювати не кола, а п'ятикутники, потім шестикутники і таке інше. Також він запропонував формальний запис цих багатокутників, щоб можна було записувати числа, не малюючи складних малюнків. Нотація Мозера виглядає так:

Таким чином, за нотацією Мозера стейнхаузовська мега записується як 2, а мегістон як 10. Крім того, Лео Мозер запропонував називати багатокутник з числом сторін рівним меге - мегагоном. І запропонував число "2 у Мегагоні", тобто 2. Це число стало відомим як число Мозер (Moser's number) або просто як мозер.


Але й мозер не найбільше. Найбільшим числом, яке коли-небудь застосовувалося в математичному доказі, є гранична величина, відома як число Грема (Graham"s number), вперше використана в 1977 році в доказі однієї оцінки в теорії Рамсея. без особливої ​​64-рівневої системи спеціальних математичних символів, введених Кнутом у 1976 році.

На жаль, число записане в нотації батога не можна перевести в запис за системою Мозера. Тому доведеться пояснити і цю систему. У принципі, у ній теж немає нічого складного. Дональд Кнут (так, так, це той самий Кнут, який написав "Мистецтво програмування" і створив редактор TeX) придумав поняття надступеня, яке запропонував записувати стрілками, спрямованими вгору:

Загалом це виглядає так:

Думаю, що все зрозуміло, тому повернемося до Грема. Грем запропонував, так звані G-числа:


  1. G1 = 3..3, де число стрілок надступеня дорівнює 33.

  2. G2 = ..3, де число стрілок надступеня дорівнює G1 .

  3. G3 = ..3, де число стрілок надступеня дорівнює G2 .


  4. G63 = ..3, де число стрілок надступеня дорівнює G62 .

Число G63 почало називатися числом Грема (позначається воно часто просто як G). Це число є найбільшим відомим у світі числом і занесене навіть до "Книги рекордів Гінесса". А от

У назви арабських чисел кожна цифра належить своєму розряду, а кожні три цифри утворюють клас. Отже, остання цифра в числі означає кількість одиниць у ньому і називається, відповідно, розрядом одиниць. Наступна, друга з кінця цифра позначає десятки (розряд десятків), і третя з кінця цифра вказує на кількість сотень у числі – розряд сотень. Далі розряди так само по черзі повторюються у кожному класі, позначаючи вже одиниці, десятки та сотні у класах тисяч, мільйонів тощо. Якщо число невелике і немає цифри десятків чи сотень, прийнято приймати їх за нуль. Класи групують цифри у числах по три, нерідко у обчислювальних приладах чи записах між класами ставиться точка чи пробіл, щоб візуально розділити їх. Це зроблено спрощення читання великих чисел. Кожен клас має назву: перші три цифри – це клас одиниць, далі йде клас тисяч, потім мільйонів, мільярдів (чи більйонів) тощо.

Оскільки ми користуємося десятковою системою обчислення, то основна одиниця виміру кількості – це десяток, або 10 1 . Відповідно зі збільшенням кількості цифр у числі, збільшується і кількість десятків 102,103,104 і т.д. Знаючи кількість десятків можна легко визначити клас і розряд числа, наприклад, 1016 – це десятки квадрилліонів, а 3×1016 – це три десятки квадрильйонів. Розкладання чисел на десяткові компоненти відбувається наступним чином – кожна цифра виводиться в окремий доданок, множачись на необхідний коефіцієнт 10 n , де n – положення цифри за рахунок зліва направо.
Наприклад: 253 981=2×10 6 +5×10 5 +3×10 4 +9×10 3 +8×10 2 +1×10 1

Також ступінь числа 10 використовується і в написанні десяткових дробів: 10 (-1) - це 0,1 або один десятий. Аналогічно з попереднім пунктом, можна розкласти і десяткове число, n у такому разі позначатиме положення цифри від коми праворуч наліво, наприклад: 0,347629 = 3×10 (-1) +4×10 (-2) +7×10 (-3) +6×10 (-4) +2×10 (-5) +9×10 (-6) )

Назви десяткових чисел. Десяткові числа читаються за останнім розрядом цифр після коми, наприклад 0,325 – триста двадцять п'ять тисячних, де тисячні – це розряд останньої цифри 5 .

Таблиця назв великих чисел, розрядів та класів

1-й клас одиниці 1-й розряд одиниці
2-й розряд десятки
3-й розряд сотні
1 = 10 0
10 = 10 1
100 = 10 2
2-й клас тисячі 1-й розряд одиниці тисяч
2-й розряд десятки тисяч
3-й розряд сотні тисяч
1 000 = 10 3
10 000 = 10 4
100 000 = 10 5
3-й клас мільйони 1-й розряд одиниці мільйонів
2-й розряд десятки мільйонів
3-й розряд сотні мільйонів
1 000 000 = 10 6
10 000 000 = 10 7
100 000 000 = 10 8
4-й клас мільярди 1-й розряд одиниці мільярдів
2-й розряд десятки мільярдів
3-й розряд сотні мільярдів
1 000 000 000 = 10 9
10 000 000 000 = 10 10
100 000 000 000 = 10 11
5-й клас трильйони 1-й розряд одиниці трильйонів
2-й розряд десятки трильйонів
3-й розряд сотні трильйонів
1 000 000 000 000 = 10 12
10 000 000 000 000 = 10 13
100 000 000 000 000 = 10 14
6-й клас Квадрильйони 1-й розряд одиниці квадрильйонів
2-й розряд десятки квадрильйонів
3-й розряд десятки квадрильйонів
1 000 000 000 000 000 = 10 15
10 000 000 000 000 000 = 10 16
100 000 000 000 000 000 = 10 17
7-й клас квінтильйони 1-й розряд одиниці квінтильйонів
2-й розряд десятки квінтильйонів
3-й розряд сотні квінтильйонів
1 000 000 000 000 000 000 = 10 18
10 000 000 000 000 000 000 = 10 19
100 000 000 000 000 000 000 = 10 20
8-й клас секстильйони 1-й розряд одиниці секстильйонів
2-й розряд десятки секстильйонів
3-й розряд сотні секстильйонів
1 000 000 000 000 000 000 000 = 10 21
10 000 000 000 000 000 000 000 = 10 22
1 00 000 000 000 000 000 000 000 = 10 23
9-й клас септільйони 1-й розряд одиниці септильйонів
2-й розряд десятки септільйонів
3-й розряд сотні септильйонів
1 000 000 000 000 000 000 000 000 = 10 24
10 000 000 000 000 000 000 000 000 = 10 25
100 000 000 000 000 000 000 000 000 = 10 26
10-й клас октиліон 1-й розряд одиниці октильйонів
2-й розряд десятки октильйонів
3-й розряд сотні октильйонів
1 000 000 000 000 000 000 000 000 000 = 10 27
10 000 000 000 000 000 000 000 000 000 = 10 28
100 000 000 000 000 000 000 000 000 000 = 10 29

Є числа, які так неймовірно, неймовірно великі, що навіть для того, щоб записати їх, знадобиться весь всесвіт цілком. Але ось що справді зводить з розуму ... деякі з цих незбагненно великих чисел вкрай важливі для розуміння світу.

Коли я говорю “найбільше у Всесвіті”, насправді я маю на увазі найбільше значущечисло, максимально можливе число, яке певною мірою корисне. Є багато претендентів на цей титул, але я відразу ж попереджаю вас: дійсно існує ризик того, що спроба зрозуміти все це підірве ваш мозок. І, крім того, з надлишком математики, ви отримаєте мало задоволення.

Гугол та гуголплекс

Едвард Каснер

Ми могли б почати з двох, ймовірно, найбільших чисел, про які ви коли-небудь чули, і це дійсно два найбільших числа, які мають загальноприйняті визначення в англійській мові. (Є досить точна номенклатура, що використовується для позначення чисел настільки великих, як вам хотілося б, але ці два числа в даний час ви не знайдете в словниках.) Гугол, відколи він став всесвітньо відомим (хоча і з помилками, прямуючи. це googol) у вигляді Google, народився в 1920 році як спосіб зацікавити дітей великими числами.

З цією метою Едвард Каснер (на фото), взяв двох своїх племінників, Мільтона та Едвіна Сіротт, на прогулянку Нью-Джерсі Palisades. Він запропонував їм висувати будь-які ідеї, і тоді дев'ятирічний Мільтон запропонував “гугол”. Звідки він узяв це слово, невідомо, але Каснер вирішив, що або число, в якому за одиницею стоять сто нулів відтепер називатиметься гугол.

Але молодий Мільтон на цьому не зупинився, він запропонував ще більше, гуголплекс. Це число, на думку Мільтона, в якому на першому місці стоїть 1, а потім стільки нулів, скільки ви могли б написати до того, як втомитесь. Хоча ця ідея чарівна, Каснер вирішив, що необхідне формальне визначення. Як він пояснив у своїй книзі 1940 року видання “Математика і уява”, визначення Мільтона залишає відкритою ризиковану можливість того, що випадковий блазень може стати математиком, який перевершує Альберта Ейнштейна просто тому, що він має більшу витривалість.

Таким чином, Каснер вирішив, що гуголплекс дорівнюватиме , або 1, а потім гугол нулів. Інакше, і в позначеннях, аналогічних тим, з якими ми матимемо справу для інших чисел, говоритимемо, що гуголплекс — це . Щоб показати, наскільки це заворожує, Карл Саган якось зауважив, що фізично неможливо записати всі нулі гуголплексу, бо просто не вистачить місця у Всесвіті. Якщо заповнити весь обсяг спостерігається Всесвіту дрібними частинками пилу розміром приблизно 1,5 мікрона, то число різних способіврозташування цих частинок приблизно дорівнює одному гуголплексу.

Лінгвістично кажучи, гугол і гуголплекс, ймовірно, два найбільших значущих числа (принаймні в англійській мові), але, як ми зараз встановимо, способів визначення “значущості” нескінченно багато.

Реальний світ

Якщо ми говоритимемо про найбільшу значну кількість, існує розумний аргумент, що це дійсно означає, що потрібно знайти найбільше число з реально існуючим у світі значенням. Ми можемо почати з поточної людської популяції, яка зараз становить близько 6920 мільйонів. Світовий ВВП у 2010 році, за оцінками, становив близько 61960 мільярдів доларів, але обидва ці числа незначні порівняно з приблизно 100 трильйонами клітин, що становлять організм людини. Звичайно, жодне з цих чисел не може зрівнятися з повним числом частинок у Всесвіті, яке, як правило, вважається рівним приблизно і це число настільки велике, що наша мова не має відповідного йому слова.

Ми можемо пограти трохи з системами заходів, роблячи числа більше та більше. Так, маса Сонця в тоннах буде меншою, ніж у фунтах. Прекрасний спосіб зробити це полягає у використанні системи одиниць Планка, які є найменшими можливими заходами, для яких залишаються чинними закони фізики. Наприклад, вік Всесвіту в часі Планка становить близько . Якщо ми повернемося в першу одиницю часу Планка після Великого Вибуху, то побачимо, що щільність Всесвіту була . Ми отримуємо все більше, але ми ще не досягли навіть гугола.

Найбільше з будь-яким реальним додатком світі — чи, у разі реальним застосуванням у світах — мабуть, , — одне з останніх оцінок числа всесвітів у мультивсеселенной. Це число настільки велике, що людський мозокбуде буквально не в змозі сприйняти всі ці різні всесвіти, оскільки мозок здатний лише приблизно на конфігурації. Насправді це число, ймовірно, найбільше число з будь-яким практичним змістом, якщо ви не берете до уваги ідею мультивсесвіту в цілому. Однак є ще набагато більші числа, які там ховаються. Але для того, щоб знайти їх, ми повинні вирушити в область чистої математики, і немає кращого початку, ніж прості числа.

Прості числа Мерсенна

Частина труднощів полягає в тому, щоб придумати хороше визначення того, що таке “значне” число. Один із способів полягає в тому, щоб міркувати у термінах простих та складових чисел. Просте число, як ви, напевно, пам'ятаєте зі шкільної математики, - це будь-яке натуральне число (прим. не рівне одиниці), яке ділиться тільки на себе. Отже, і прості числа, а і складові числа. Це означає, що будь-яке складове число може зрештою бути представлене своїми простими дільниками. У певному сенсі число є більш важливим, ніж, скажімо, тому, що немає ніякого способу висловити його через добуток менших чисел.

Очевидно, ми можемо піти трохи далі. Наприклад, насправді просто , що означає, що в гіпотетичному світі, де наші знання чисел обмежені числом , математик ще може висловити число . Але вже наступне число просте, і це означає, що єдиним способом його висловити безпосередньо знати про його існування. Це означає, що найбільші відомі прості числа відіграють важливу роль, а, скажімо, гугол – який, зрештою, просто набір з чисел і перемножених між собою взагалі-то й немає. І оскільки прості числа переважно випадкові, невідомо ніяких способів передбачити, що неймовірно велике число насправді буде простим. Досі відкриття нових простих чисел — це важка справа.

Математики Давньої Греції мали поняття про прості числа, принаймні, вже в 500 році до нашої ери, а через 2000 років люди все ще знали, які числа прості лише приблизно до 750. Мислителі часів Евкліда побачили можливість спрощення, але аж до епохи Відродження математики не могли дійсно використати це на практиці. Ці числа відомі як числа Мерсенна, вони названі на честь французького вченого XVII століття Марина Мерсенна. Ідея досить проста: число Мерсенна - це будь-яке число виду. Так, наприклад, , і це число просте, те саме вірно і для .

Набагато швидше і легше визначити прості числа Мерсенна, ніж будь-який інший вид простих чисел, і комп'ютери напружено працюють у пошуках протягом останніх шести десятиліть. До 1952 найбільшим відомим простим числом було число - число з цифрами. У тому ж році на комп'ютері вирахували, що число просте, і це число складається з цифр, що робить його вже набагато більше, ніж гугол.

Комп'ютери з тих пір були на полюванні, і в даний час число Мерсенна є найбільшим простим числом, відомим людству. Виявлене у 2008 році, воно становить число з майже мільйонами цифр. Це найбільша відома кількість, яка не може бути виражена через будь-які менші числа, і якщо ви хочете допомогти знайти ще більше Мерсенна, ви (і ваш комп'ютер) завжди можете приєднатися до пошуку на сайті http://www.mersenne. org/.

Число Скьюза

Стенлі Скьюз

Знову звернемося до простих чисел. Як я вже казав, вони поводяться докорінно неправильно, це означає, що немає ніякого способу передбачити, яким буде таке просте число. Математики були змушені звернутися до деяких досить фантастичних вимірів, щоб придумати якийсь спосіб передбачити майбутні прості числа навіть у якийсь туманний спосіб. Найбільш успішною з цих спроб, ймовірно, є функція, що вважає прості числа, яку придумав у кінці XVIIIстоліття легендарний математик Карл Фрідріх Гаус.

Я позбавлю вас складнішої математики — так чи інакше, у нас багато ще попереду — але суть функції полягає в наступному: для будь-якого цілого можна оцінити, скільки існує простих чисел, менших. Наприклад, якщо , функція передбачає, що має бути простих чисел, якщо простих числа, менших , і якщо , то існує менших чисел, які є простими.

Розташування простих чисел справді має нерегулярний характер, і це лише наближення фактичного числа простих чисел. Насправді ми знаємо, що простих чисел, менших , простих чисел менших , і простих чисел менших . Це відмінна оцінка, що й казати, але це завжди лише оцінка… і, конкретніше, оцінка зверху.

У всіх відомих випадках до , функція, яка знаходить кількість простих чисел, трохи перебільшує фактичну кількість простих чисел менших . Математики колись думали, що так буде завжди, до нескінченності, що це, безумовно, відноситься і до деяких неймовірно величезних чисел, але в 1914 Джон Ідензор Літтлвуд довів, що для якогось невідомого, неймовірно величезного числа ця функція почне видавати менше простих чисел, а потім вона буде перемикатися між оцінкою зверху та оцінкою знизу нескінченне число разів.

Полювання було на точку початку стрибків, і тут з'явився Стенлі Скьюз (див. фото). В 1933 він довів, що верхня межа, коли функція, що наближає кількість простих чисел вперше дає менше значення - це число . Важко по-справжньому зрозуміти навіть у найбільш абстрактному сенсі, що насправді це число, і з цієї точки зору це було найбільше число, коли-небудь використане в серйозному математичному доказі. З того часу математики змогли зменшити верхню межу до відносно невеликого числа, але вихідне число залишилося відоме як число Скьюза.

Отже, наскільки велике число, яке робить карликом навіть могутній гуголплекс? У словнику The Penguin Dictionary of Curious and Interesting Numbers Девід Уеллс розповідає один спосіб, з допомогою якого математику Харді вдалося осмислити розмір числа Скьюза:

"Харді думав, що це "найбільше число, що коли-небудь служило будь-якої певної мети в математиці'', і припустив, що якщо грати в шахи з усіма частинками Всесвіту як фігурами, один хід полягав у перестановці місцями двох частинок, і гра припинялася б, коли одна й та сама позиція повторювалася б втретє, то число всіх можливих партій дорівнювало б приблизно числу Скьюза''.

І останнє перед тим, як рухатися далі: ми говорили про менше з двох чисел Ск'юза. Існує інше число Скьюза, який математик знайшов у 1955 році. Перше число отримано на тій підставі, що так звана гіпотеза Рімана істинна - це особливо складна гіпотеза математики, яка залишається недоведеною, дуже корисна, коли йдеться про прості числа. Тим не менш, якщо гіпотеза Рімана є хибною, Ск'юз виявив, що точка початку стрибків збільшується до .

Проблема величини

Перш ніж ми перейдемо до числа, поряд з яким навіть число Скьюза виглядає крихітним, нам потрібно трохи поговорити про масштаб, тому що інакше ми не маємо можливості оцінити, куди ми збираємося йти. Спочатку давайте візьмемо число - це крихітне число, настільки мале, що люди можуть справді мати інтуїтивне розуміння того, що воно означає. Є дуже мало чисел, які відповідають цьому опису, тому що числа більше шести перестають бути окремими числами і стають “декілька”, “багато” тощо.

Тепер давайте візьмемо, тобто. . Хоча ми насправді не можемо інтуїтивно, як це було для числа, зрозуміти, що таке, уявити те, чим є дуже легко. Поки що все йде добре. Але що станеться, якщо ми перейдемо до ? Це одно, або. Ми дуже далекі від здатності уявити собі цю величину, як і будь-яку іншу, дуже велику — ми втрачаємо здатність осягати окремі частини близько мільйона. (Щоправда, дуже багато часу зайняло б, щоб дійсно дорахувати до мільйона чого б там не було, але справа в тому, що ми все ще здатні сприймати це число.)

Тим не менш, хоча ми не можемо уявити , ми принаймні в змозі зрозуміти в загальних рисах, Що таке 7600 млрд, можливо, порівнюючи його з чимось таким, як ВВП США. Ми перейшли від інтуїції до уявлення і до простого розуміння, але принаймні ми ще маємо певну прогалину в розумінні того, що таке число. Це ось-ось зміниться, у міру нашого просування на ще один щабель вгору сходами.

Для цього нам потрібно перейти до позначення, введеного Дональдом Кнутом, відомого як стрілочна нотація. У цих позначеннях можна записати як . Коли ми потім перейдемо до , число, яке ми отримаємо, буде рівним . Це де в цілому трійок. Ми тепер значно і по-справжньому перевершили всі інші числа, про які ми вже говорили. Зрештою, навіть у найбільших з них було лише три чи чотири члени у ряді показників. Наприклад, навіть супер-число Скьюза — це “тільки” навіть з поправкою на те, що і основа, і показники набагато більші, ніж воно, як і раніше, абсолютно ніщо в порівнянні з величиною числової вежі з млрд членів.

Очевидно, що немає ніякого способу для розуміння настільки величезних чисел… проте процес, за допомогою якого вони створені, ще можна зрозуміти. Ми не могли б зрозуміти реальну кількість, яка задається вежею ступенів, в якій мільярд трійок, але ми можемо в основному уявити таку вежу з багатьма членами, і справді пристойний суперкомп'ютер зможе зберігати в пам'яті такі вежі, навіть якщо він не зможе обчислити їх дійсні значення .

Це стає все абстрактнішим, але далі буде тільки гірше. Ви можете подумати, що вежа ступенів довжина показника якої дорівнює (більше того, в попередній версії цього посту я зробив саме цю помилку), але це просто. Іншими словами, уявіть, що у вас є можливість обчислити точне значення статечної вежі з трійок, яка складається з елементів, а потім ви взяли це значення і створили нову вежу з такою кількістю в ньому, що дає .

Повторіть цей процес з кожним наступним числом ( прямуючи.починаючи справа), поки ви не зробите цього разу, і тоді нарешті ви отримаєте . Це число, яке просто неймовірно велике, але принаймні кроки його отримання начебто зрозумілі, якщо робити дуже повільно. Ми більше не можемо зрозуміти числа або уявити процедуру, завдяки якій воно виходить, але, принаймні, ми можемо зрозуміти основний алгоритм лише у досить великий термін.

Тепер підготуємо розум до того, щоб його справді підірвати.

Число Грема (Грехема)

Рональд Грем

Ось як ви отримаєте число Грема, яке займає місце в Книзі рекордів Гіннеса як найбільше число, яке коли-небудь використовували в математичному доказі. Цілком неможливо уявити, наскільки воно велике, і так само важко точно пояснити, що це таке. У принципі число Грема з'являється, коли мають справу з гіперкубами, які є теоретичними геометричними формами з більш ніж трьома вимірами. Математик Рональд Грем (див. фото) хотів з'ясувати, за якого найменшого числа вимірювань певні властивості гіперкуба залишатимуться стійкими. (Вибачте за таке розпливчасте пояснення, але я впевнений, що нам усім потрібно отримати принаймні два вчені ступені з математики, щоб зробити його більш точним.)

У будь-якому випадку число Ґрема є оцінкою зверху цього мінімального числа вимірювань. Отже, наскільки великий цей верхній кордон? Давайте повернемося до такого великого, що алгоритм його отримання ми можемо зрозуміти досить неясно. Тепер, замість того, щоб просто стрибати вгору ще на один рівень до , ми будемо рахувати число , в якому є стрілки між першою та останньою трійками. Тепер ми далеко за межами навіть найменшого розуміння того, що таке це число або навіть від того, що потрібно робити, щоб його обчислити.

Тепер повторимо цей процес рази ( прямуючи.на кожному наступному кроці ми пишемо число стрілок, що дорівнює числу, отриманому на попередньому кроці).

Це, пані та панове, число Грема, яке приблизно на порядку стоїть вище за точку людського розуміння. Це число, яке настільки більше, ніж будь-яке число, яке можна собі уявити - це набагато більше, ніж будь-яка нескінченність, яку ви могли б коли-небудь сподіватися собі уявити - воно просто не піддається навіть абстрактним описом.

Але дивна річ. Оскільки число Грема переважно — це просто трійки, перемножені між собою, ми знаємо деякі його властивості без фактичного його обчислення. Ми не можемо уявити число Грема за допомогою будь-яких знайомих нам позначень, навіть якби ми використали весь Всесвіт, щоб записати його, але я можу назвати вам прямо зараз останні дванадцять цифр числа Грема: . І це ще не все: ми знаємо принаймні останні цифри Грема.

Звичайно, варто пам'ятати, що це число лише верхня межа у вихідному завданні Грема. Цілком можливо, що фактичне число вимірювань, необхідних для виконання потрібної властивості набагато менше. Насправді ще з 1980-х років вважалося, на думку більшості фахівців у цій галузі, що фактично кількість вимірів лише шість — число настільки мале, що ми можемо зрозуміти його на інтуїтивному рівні. З того часу нижня межа була збільшена до , але є ще дуже великий шанс, що розв'язання задачі Грема не лежить поряд з числом настільки ж великим, як число Грема.

До нескінченності

То чи є числа більше, ніж число Грема? Є, звичайно, для початку є число Грема. Що стосується значного числа… добре, є деякі диявольськи складні галузі математики (зокрема, області, відомої як комбінаторика) та інформатики, в яких зустрічаються числа навіть більші, ніж число Грема. Але ми майже досягли межі того, що, як я можу сподіватися, будь-коли зможуть розумно пояснити. Для тих, хто досить нерозважливий достатньо, щоб піти ще далі, пропонується література для додаткового читання на свій страх та ризик.

Ну а зараз дивовижна цитата, яка приписується Дугласу Рею ( прямуючи.Чесно кажучи, звучить досить смішно):

“Я бачу скупчення невиразних чисел, які ховаються там, у темряві, за невеликою плямою світла, що дає свічка розуму. Вони шепочуться один з одним; змовляючись хто знає про що. Можливо, вони нас не дуже люблять за захоплення їхніх менших братиків нашими умами. Або, можливо, вони просто ведуть однозначний числовий спосіб життя, там, за межами нашого розуміння”.