Wzory trygonometryczne jak rozwiązać. Równania trygonometryczne - wzory, rozwiązania, przykłady

Zachowanie Twojej prywatności jest dla nas ważne. Z tego powodu opracowaliśmy Politykę prywatności, która opisuje, w jaki sposób wykorzystujemy i przechowujemy Twoje dane. Zapoznaj się z naszymi praktykami dotyczącymi prywatności i daj nam znać, jeśli masz jakiekolwiek pytania.

Gromadzenie i wykorzystywanie danych osobowych

Dane osobowe to dane, które można wykorzystać do identyfikacji konkretnej osoby lub skontaktowania się z nią.

Możesz zostać poproszony o podanie swoich danych osobowych w dowolnym momencie kontaktu z nami.

Poniżej znajduje się kilka przykładów rodzajów danych osobowych, które możemy gromadzić i sposobu, w jaki możemy je wykorzystywać.

Jakie dane osobowe zbieramy:

  • Kiedy składasz wniosek na stronie, możemy zbierać różne informacje, w tym Twoje imię i nazwisko, numer telefonu, adres e-mail itp.

Jak wykorzystujemy Twoje dane osobowe:

  • Gromadzone przez nas dane osobowe pozwalają nam kontaktować się z Tobą w sprawie wyjątkowych ofert, promocji i innych wydarzeń oraz nadchodzących wydarzeń.
  • Od czasu do czasu możemy wykorzystywać Twoje dane osobowe do wysyłania ważnych powiadomień i komunikatów.
  • Możemy również wykorzystywać dane osobowe do celów wewnętrznych, takich jak przeprowadzanie audytów, analiza danych i różnych badań w celu ulepszenia świadczonych przez nas usług i przedstawienia rekomendacji dotyczących naszych usług.
  • Jeśli bierzesz udział w losowaniu nagród, konkursie lub podobnej promocji, możemy wykorzystać podane przez Ciebie informacje w celu administrowania takimi programami.

Ujawnianie informacji osobom trzecim

Nie udostępniamy otrzymanych od Państwa informacji osobom trzecim.

Wyjątki:

  • Jeżeli jest to konieczne – zgodnie z prawem, procedurą sądową, w postępowaniu sądowym i/lub na podstawie publicznych żądań lub wniosków organów rządowych Federacji Rosyjskiej – do ujawnienia Twoich danych osobowych. Możemy również ujawnić informacje o Tobie, jeśli uznamy, że takie ujawnienie jest konieczne lub odpowiednie ze względów bezpieczeństwa, egzekwowania prawa lub innych celów ważnych dla społeczeństwa.
  • W przypadku reorganizacji, fuzji lub sprzedaży możemy przekazać zebrane dane osobowe odpowiedniej następczej stronie trzeciej.

Ochrona danych osobowych

Podejmujemy środki ostrożności – w tym administracyjne, techniczne i fizyczne – aby chronić Twoje dane osobowe przed utratą, kradzieżą i niewłaściwym wykorzystaniem, a także nieuprawnionym dostępem, ujawnieniem, zmianą i zniszczeniem.

Szanowanie Twojej prywatności na poziomie firmy

Aby zapewnić bezpieczeństwo Twoich danych osobowych, przekazujemy naszym pracownikom standardy dotyczące prywatności i bezpieczeństwa oraz rygorystycznie egzekwujemy praktyki dotyczące prywatności.

Możesz zamówić szczegółowe rozwiązanie swojego problemu!!!

Równość zawierająca niewiadomą pod znakiem funkcji trygonometrycznej („sin x, cos x, tan x” lub „ctg x”) nazywa się równaniem trygonometrycznym i to właśnie ich wzory rozważymy dalej.

Najprostsze równania to „sin x=a, cos x=a, tg x=a, ctg x=a”, gdzie „x” to kąt, który należy znaleźć, „a” to dowolna liczba. Zapiszmy podstawowe formuły dla każdego z nich.

1. Równanie „grzech x=a”.

Dla `|a|>1` nie ma rozwiązań.

Kiedy `|a| \równ. 1` ma nieskończoną liczbę rozwiązań.

Wzór pierwiastkowy: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. Równanie „cos x=a”.

Dla `|a|>1` - podobnie jak w przypadku sinusa, nie ma ono rozwiązań wśród liczb rzeczywistych.

Kiedy `|a| \równ. 1` ma nieskończoną liczbę rozwiązań.

Wzór na pierwiastek: `x=\pm arccos a + 2\pi n, n \in Z`

Specjalne przypadki sinusa i cosinusa na wykresach.

3. Równanie `tg x=a`

Ma nieskończoną liczbę rozwiązań dla dowolnych wartości `a`.

Wzór na pierwiastek: `x=arctg a + \pi n, n \in Z`

4. Równanie `ctg x=a`

Ma również nieskończoną liczbę rozwiązań dla dowolnych wartości `a`.

Wzór na pierwiastek: `x=arcctg a + \pi n, n \in Z`

Wzory na pierwiastki równań trygonometrycznych w tabeli

Dla sinusa:
Dla cosinusa:
Dla stycznych i cotangensów:
Wzory do rozwiązywania równań zawierających odwrotne funkcje trygonometryczne:

Metody rozwiązywania równań trygonometrycznych

Rozwiązanie dowolnego równania trygonometrycznego składa się z dwóch etapów:

  • za pomocą przekształcenia go w najprostszy;
  • rozwiązać najprostsze równanie uzyskane przy użyciu wzorów pierwiastkowych i tabel zapisanych powyżej.

Przyjrzyjmy się głównym metodom rozwiązań na przykładach.

Metoda algebraiczna.

Metoda ta polega na zastąpieniu zmiennej i podstawieniu jej do równości.

Przykład. Rozwiąż równanie: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 - x)+1=0`

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

dokonaj zamiany: `cos(x+\frac \pi 6)=y`, następnie `2y^2-3y+1=0`,

znajdujemy pierwiastki: `y_1=1, y_2=1/2`, z czego wynikają dwa przypadki:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3- \frac \pi 6+2\pi n`.

Odpowiedź: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Faktoryzacja.

Przykład. Rozwiąż równanie: `sin x+cos x=1`.

Rozwiązanie. Przesuńmy wszystkie wyrazy równości w lewo: `sin x+cos x-1=0`. Używając , przekształcamy i rozkładamy na czynniki lewą stronę:

`sin x — 2sin^2 x/2=0`,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

`2sin x/2 (cos x/2-sin x/2)=0`,

  1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n` , `x_2=\pi/2+ 2\pi n`.

Odpowiedź: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Redukcja do równania jednorodnego

Najpierw musisz zredukować to równanie trygonometryczne do jednej z dwóch postaci:

`a sin x+b cos x=0` (jednorodne równanie pierwszego stopnia) lub `a sin^2 x + b sin x cos x +c cos^2 x=0` (jednorodne równanie drugiego stopnia).

Następnie podziel obie części przez `cos x \ne 0` - w pierwszym przypadku i przez `cos^2 x \ne 0` - w drugim przypadku. Otrzymujemy równania dla `tg x`: `a tg x+b=0` i `a tg^2 x + b tg x +c =0`, które należy rozwiązać znanymi metodami.

Przykład. Rozwiąż równanie: `2 sin^2 x+sin x cos x - cos^2 x=1`.

Rozwiązanie. Zapiszmy prawą stronę jako `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 grzech^2 x+sin x cos x — cos^2 x -` ` grzech^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Jest to jednorodne równanie trygonometryczne drugiego stopnia, dzielimy jego lewą i prawą stronę przez `cos^2 x \ne 0`, otrzymujemy:

`\frac (sin^2 x)(cos^2 x)+\frac(sin x cos x)(cos^2 x) — \frac(2 cos^2 x)(cos^2 x)=0`

`tg^2 x+tg x — 2=0`. Wprowadźmy zamianę `tg x=t`, w wyniku której otrzymamy `t^2 + t - 2=0`. Pierwiastkami tego równania są „t_1=-2” i „t_2=1”. Następnie:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

Odpowiedź. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

Przejście do połowy kąta

Przykład. Rozwiąż równanie: `11 grzech x - 2 cos x = 10`.

Rozwiązanie. Zastosujmy wzory na podwójny kąt i otrzymamy: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x /2 +10 cos^2 x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Stosując opisaną powyżej metodę algebraiczną otrzymujemy:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Odpowiedź. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Wprowadzenie kąta pomocniczego

W równaniu trygonometrycznym „a sin x + b cos x = c”, gdzie a, b, c to współczynniki, a x to zmienna, podziel obie strony przez „sqrt (a^2+b^2)”:

`\frac a(sqrt (a^2+b^2)) sin x +` `\frac b(sqrt (a^2+b^2)) cos x =` `\frac c(sqrt (a^2) ) +b^2))`.

Współczynniki po lewej stronie mają właściwości sinusa i cosinusa, czyli suma ich kwadratów jest równa 1, a moduły nie większe niż 1. Oznaczmy je następująco: `\frac a(sqrt (a^2 +b^2))=cos \varphi` , ` \frac b(sqrt (a^2+b^2)) =sin \varphi`, `\frac c(sqrt (a^2+b^2)) =C`, następnie:

`cos \varphi sin x + sin \varphi cos x =C`.

Przyjrzyjmy się bliżej następującemu przykładowi:

Przykład. Rozwiąż równanie: `3 grzech x+4 cos x=2`.

Rozwiązanie. Podziel obie strony równości przez „sqrt (3^2+4^2)”, otrzymamy:

`\frac (3 sin x) (sqrt (3^2+4^2))+` `\frac(4 cos x)(sqrt (3^2+4^2))=` `\frac 2(sqrt (3^2+4^2))`

`3/5 grzech x+4/5 cos x=2/5`.

Oznaczmy `3/5 = cos \varphi` , `4/5=sin \varphi`. Ponieważ `sin \varphi>0`, `cos \varphi>0`, przyjmujemy `\varphi=arcsin 4/5` jako kąt pomocniczy. Następnie zapisujemy naszą równość w postaci:

`cos \varphi sin x+sin \varphi cos x=2/5`

Stosując wzór na sumę kątów dla sinusa, naszą równość zapisujemy w postaci:

`grzech (x+\varphi)=2/5`,

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Odpowiedź. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Ułamkowe racjonalne równania trygonometryczne

Są to równości z ułamkami, których liczniki i mianowniki zawierają funkcje trygonometryczne.

Przykład. Rozwiązać równanie. `\frac (sin x)(1+cos x)=1-cos x`.

Rozwiązanie. Pomnóż i podziel prawą stronę równości przez „(1+cos x)”. W rezultacie otrzymujemy:

`\frac (sin x)(1+cos x)=` `\frac ((1-cos x)(1+cos x))(1+cos x)`

`\frac (sin x)(1+cos x)=` `\frac (1-cos^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)=` `\frac (sin^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)-` `\frac (sin^2 x)(1+cos x)=0`

`\frac (sin x-sin^2 x)(1+cos x)=0`

Biorąc pod uwagę, że mianownik nie może być równy zero, otrzymujemy `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

Przyrównajmy licznik ułamka do zera: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Następnie `sin x=0` lub `1-sin x=0`.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

Biorąc pod uwagę, że ` x \ne \pi+2\pi n, n \in Z`, rozwiązaniami są `x=2\pi n, n \in Z` i `x=\pi /2+2\pi n` , `n \w Z`.

Odpowiedź. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

Trygonometria, a w szczególności równania trygonometryczne, są stosowane w prawie wszystkich obszarach geometrii, fizyki i inżynierii. Naukę rozpoczyna się w 10. klasie, zawsze są zadania na egzaminie Unified State Exam, więc postaraj się zapamiętać wszystkie wzory równań trygonometrycznych - na pewno ci się przydadzą!

Jednak nie musisz ich nawet zapamiętywać, najważniejsze jest zrozumienie istoty i umiejętność jej wyciągnięcia. To nie jest tak trudne, jak się wydaje. Przekonaj się sam, oglądając wideo.

Podczas rozwiązywania wielu problemy matematyczne zwłaszcza te, które mają miejsce przed klasą 10, jasno określona jest kolejność wykonywanych działań, które doprowadzą do celu. Do takich problemów zaliczają się np. równania liniowe i kwadratowe, nierówności liniowe i kwadratowe, równania ułamkowe i równania redukujące do równań kwadratowych. Zasada skutecznego rozwiązania każdego z wymienionych problemów jest następująca: musisz ustalić, jakiego rodzaju problem rozwiązujesz, pamiętaj o niezbędnej sekwencji działań, które doprowadzą do pożądanego rezultatu, tj. odpowiedz i wykonaj poniższe kroki.

Oczywiste jest, że sukces lub porażka w rozwiązaniu konkretnego problemu zależy głównie od tego, jak poprawnie zostanie określony rodzaj rozwiązywanego równania, jak poprawnie zostanie odtworzona kolejność wszystkich etapów jego rozwiązania. Oczywiście w tym przypadku niezbędna jest umiejętność wykonywania identycznych przekształceń i obliczeń.

Inaczej jest z równania trygonometryczne. Ustalenie faktu, że równanie jest trygonometryczne, wcale nie jest trudne. Trudności pojawiają się przy ustaleniu sekwencji działań, które doprowadziłyby do prawidłowej odpowiedzi.

Czasami trudno określić jego typ na podstawie wyglądu równania. A nie znając rodzaju równania, prawie niemożliwe jest wybranie właściwego spośród kilkudziesięciu wzorów trygonometrycznych.

Aby rozwiązać równanie trygonometryczne, musisz spróbować:

1. sprowadzić wszystkie funkcje zawarte w równaniu pod „te same kąty”;
2. doprowadzić równanie do „funkcji identycznych”;
3. uwzględnij lewą stronę równania itp.

Rozważmy podstawowe metody rozwiązywania równań trygonometrycznych.

I. Sprowadzenie do najprostszych równań trygonometrycznych

Schemat rozwiązania

Krok 1. Wyraź funkcję trygonometryczną za pomocą znanych składników.

Krok 2. Znajdź argument funkcji, korzystając ze wzorów:

cos x = a; x = ±arccos a + 2πn, n ЄZ.

grzech x = a; x = (-1) n arcsin a + πn, n Є Z.

tan x = a; x = arctan a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Krok 3. Znajdź nieznaną zmienną.

Przykład.

2 cos(3x – π/4) = -√2.

Rozwiązanie.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Odpowiedź: ±π/4 + π/12 + 2πn/3, n Є Z.

II. Zmienna wymiana

Schemat rozwiązania

Krok 1. Sprowadź równanie do postaci algebraicznej w odniesieniu do jednej z funkcji trygonometrycznych.

Krok 2. Oznacz wynikową funkcję przez zmienną t (jeśli to konieczne, wprowadź ograniczenia na t).

Krok 3. Zapisz i rozwiąż powstałe równanie algebraiczne.

Krok 4. Dokonaj odwrotnej wymiany.

Krok 5. Rozwiąż najprostsze równanie trygonometryczne.

Przykład.

2cos 2 (x/2) – 5sin (x/2) – 5 = 0.

Rozwiązanie.

1) 2(1 – grzech 2 (x/2)) – 5 grzech (x/2) – 5 = 0;

2 grzech 2 (x/2) + 5 grzech (x/2) + 3 = 0.

2) Niech grzech (x/2) = t, gdzie |t| ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 lub e = -3/2, nie spełnia warunku |t| ≤ 1.

4) grzech(x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Odpowiedź: x = π + 4πn, n Є Z.

III. Metoda redukcji rzędu równań

Schemat rozwiązania

Krok 1. Zamień to równanie na liniowe, korzystając ze wzoru na stopień redukcji:

grzech 2 x = 1/2 · (1 – cos 2x);

sałata 2 x = 1/2 · (1 + sałata 2x);

tg 2 x = (1 – cos 2x) / (1 + cos 2x).

Krok 2. Rozwiąż powstałe równanie, stosując metody I i II.

Przykład.

cos 2x + cos 2 x = 5/4.

Rozwiązanie.

1) sałata 2x + 1/2 · (1 + sałata 2x) = 5/4.

2) sałata 2x + 1/2 + 1/2 · sałata 2x = 5/4;

3/2 sałata 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Odpowiedź: x = ±π/6 + πn, n Є Z.

IV. Równania jednorodne

Schemat rozwiązania

Krok 1. Sprowadź to równanie do postaci

a) a sin x + b cos x = 0 (równanie jednorodne pierwszego stopnia)

lub do widoku

b) a grzech 2 x + b grzech x · cos x + c cos 2 x = 0 (równanie jednorodne drugiego stopnia).

Krok 2. Podziel obie strony równania przez

a) cos x ≠ 0;

b) cos 2 x ≠ 0;

i uzyskaj równanie na tan x:

a) opalenizna x + b = 0;

b) a tan 2 x + b arctan x + c = 0.

Krok 3. Rozwiąż równanie znanymi metodami.

Przykład.

5sin 2 x + 3sin x cos x – 4 = 0.

Rozwiązanie.

1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

grzech 2 x + 3sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3tg x – 4 = 0.

3) Niech więc tg x = t

t 2 + 3 t – 4 = 0;

t = 1 lub t = -4, co oznacza

tg x = 1 lub tg x = -4.

Z pierwszego równania x = π/4 + πn, n Є Z; z drugiego równania x = -arctg 4 + πk, k Є Z.

Odpowiedź: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Metoda przekształcenia równania za pomocą wzorów trygonometrycznych

Schemat rozwiązania

Krok 1. Korzystając ze wszystkich możliwych wzorów trygonometrycznych, sprowadź to równanie do równania rozwiązanego metodami I, II, III, IV.

Krok 2. Rozwiąż powstałe równanie, korzystając ze znanych metod.

Przykład.

grzech x + grzech 2x + grzech 3x = 0.

Rozwiązanie.

1) (grzech x + grzech 3x) + grzech 2x = 0;

2sin 2x cos x + grzech 2x = 0.

2) grzech 2x (2cos x + 1) = 0;

grzech 2x = 0 lub 2cos x + 1 = 0;

Z pierwszego równania 2x = π/2 + πn, n Є Z; z drugiego równania cos x = -1/2.

Mamy x = π/4 + πn/2, n Є Z; z drugiego równania x = ±(π – π/3) + 2πk, k Є Z.

W rezultacie x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Odpowiedź: x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Zdolność i umiejętność rozwiązywania równań trygonometrycznych jest bardzo duża Co ważne, ich rozwój wymaga dużego wysiłku, zarówno ze strony ucznia, jak i nauczyciela.

Z rozwiązywaniem równań trygonometrycznych wiąże się wiele problemów stereometrii, fizyki itp. Proces rozwiązywania takich problemów obejmuje wiele wiedzy i umiejętności, które można zdobyć studiując elementy trygonometrii.

Równania trygonometryczne zajmują ważne miejsce w procesie uczenia się matematyki i rozwoju osobistego w ogóle.

Nadal masz pytania? Nie wiesz jak rozwiązywać równania trygonometryczne?
Aby uzyskać pomoc korepetytora zarejestruj się.
Pierwsza lekcja jest bezpłatna!

stronie internetowej, przy kopiowaniu materiału w całości lub w części wymagany jest link do źródła.

Trygonometria jako nauka wywodzi się ze starożytnego Wschodu. Astronomowie wyprowadzili pierwsze stosunki trygonometryczne w celu stworzenia dokładnego kalendarza i orientacji według gwiazd. Obliczenia te dotyczyły trygonometrii sferycznej, natomiast w kurs szkolny badać stosunki boków i kątów w trójkącie płaskim.

Trygonometria to dział matematyki zajmujący się właściwościami funkcji trygonometrycznych oraz zależnościami między bokami i kątami trójkątów.

W okresie rozkwitu kultury i nauki w I tysiącleciu naszej ery wiedza rozprzestrzeniła się ze starożytnego Wschodu do Grecji. Ale główne odkrycia trygonometrii są zasługą ludzi kalifatu arabskiego. W szczególności turkmeński naukowiec al-Marazi wprowadził funkcje takie jak tangens i cotangens oraz opracował pierwsze tabele wartości sinusów, stycznych i cotangensów. Pojęcia sinusa i cosinusa zostały wprowadzone przez indyjskich naukowców. Trygonometrii poświęcano wiele uwagi w pracach tak wielkich postaci starożytności, jak Euklides, Archimedes i Eratostenes.

Podstawowe wielkości trygonometrii

Podstawowe funkcje trygonometryczne argumentu numerycznego to sinus, cosinus, tangens i cotangens. Każdy z nich ma swój własny wykres: sinus, cosinus, tangens i cotangens.

Wzory do obliczania wartości tych wielkości opierają się na twierdzeniu Pitagorasa. Jest to lepiej znane uczniom w sformułowaniu: „Spodnie pitagorejskie są równe we wszystkich kierunkach”, ponieważ dowód przedstawiono na przykładzie trójkąta prostokątnego równoramiennego.

Sinus, cosinus i inne zależności ustalają związek między kątami ostrymi i bokami dowolnego trójkąta prostokątnego. Przedstawmy wzory na obliczenie tych wielkości dla kąta A i prześledźmy zależności pomiędzy funkcjami trygonometrycznymi:

Jak widać, tg i ctg są funkcjami odwrotnymi. Jeśli wyobrazimy sobie nogę a jako iloczyn grzechu A i przeciwprostokątnej c oraz nogę b jako cos A*c, otrzymamy następujące wzory na styczną i kotangę:

Koło trygonometryczne

Graficznie zależność pomiędzy wymienionymi wielkościami można przedstawić w następujący sposób:

Okrąg w tym przypadku reprezentuje wszystkie możliwe wartości kąta α - od 0° do 360°. Jak widać na rysunku, każda funkcja przyjmuje wartość ujemną lub dodatnią w zależności od kąta. Przykładowo sin α będzie miał znak „+”, jeśli α należy do 1. i 2. ćwiartki koła, czyli mieści się w przedziale od 0° do 180°. Dla α od 180° do 360° (III i IV ćwiartka) sin α może mieć tylko wartość ujemną.

Spróbujmy zbudować tablice trygonometryczne dla określonych kątów i dowiedzieć się, co oznaczają wielkości.

Wartości α równe 30°, 45°, 60°, 90°, 180° itd. nazywane są przypadkami specjalnymi. Wartości funkcji trygonometrycznych dla nich są obliczane i prezentowane w formie specjalnych tabel.

Kąty te nie zostały wybrane przypadkowo. Oznaczenie π w tabelach dotyczy radianów. Rad to kąt, pod którym długość łuku koła odpowiada jego promieniowi. Wartość tę wprowadzono w celu ustalenia uniwersalnej zależności, przy obliczaniu w radianach rzeczywista długość promienia w cm nie ma znaczenia.

Kąty w tabelach funkcji trygonometrycznych odpowiadają wartościom radianów:

Nietrudno więc zgadnąć, że 2π to pełny okrąg, czyli 360°.

Własności funkcji trygonometrycznych: sinus i cosinus

Aby rozważyć i porównać podstawowe właściwości sinusa i cosinusa, tangensa i cotangensu, należy narysować ich funkcje. Można tego dokonać w postaci krzywej umiejscowionej w dwuwymiarowym układzie współrzędnych.

Rozważ tabelę porównawczą właściwości sinusa i cosinusa:

SinusoidaCosinus
y = grzech xy = cos x
ODZ [-1; 1]ODZ [-1; 1]
sin x = 0, dla x = πk, gdzie k ϵ Zcos x = 0, dla x = π/2 + πk, gdzie k ϵ Z
sin x = 1, dla x = π/2 + 2πk, gdzie k ϵ Zcos x = 1, przy x = 2πk, gdzie k ϵ Z
sin x = - 1, przy x = 3π/2 + 2πk, gdzie k ϵ Zcos x = - 1, dla x = π + 2πk, gdzie k ϵ Z
sin (-x) = - sin x, czyli funkcja jest nieparzystacos (-x) = cos x, czyli funkcja jest parzysta
funkcja jest okresowa, najmniejszy okres wynosi 2π
sin x › 0, gdzie x należy do 1. i 2. ćwiartki lub od 0° do 180° (2πk, π + 2πk)cos x › 0, gdzie x należy do ćwiartek I i IV lub od 270° do 90° (- π/2 + 2πk, π/2 + 2πk)
sin x ‹ 0, gdzie x należy do trzeciej i czwartej ćwiartki lub od 180° do 360° (π + 2πk, 2π + 2πk)cos x ‹ 0, gdzie x należy do 2. i 3. ćwiartki lub od 90° do 270° (π/2 + 2πk, 3π/2 + 2πk)
wzrosty przedziału [- π/2 + 2πk, π/2 + 2πk]rośnie w przedziale [-π + 2πk, 2πk]
maleje na przedziałach [π/2 + 2πk, 3π/2 + 2πk]maleje w odstępach czasu
pochodna (sin x)’ = cos xpochodna (cos x)’ = - sin x

Ustalenie, czy funkcja jest parzysta, czy nie, jest bardzo proste. Wystarczy wyobrazić sobie okrąg trygonometryczny ze znakami wielkości trygonometrycznych i w myślach „złożyć” wykres względem osi OX. Jeśli znaki się pokrywają, funkcja jest parzysta, w przeciwnym razie jest nieparzysta.

Wprowadzenie radianów i wyszczególnienie podstawowych własności fal sinusoidalnych i cosinusoidalnych pozwala przedstawić następujący wzór:

Bardzo łatwo jest sprawdzić poprawność wzoru. Na przykład dla x = π/2 sinus wynosi 1, podobnie jak cosinus x = 0. Sprawdzenie można przeprowadzić, korzystając z tabel lub śledząc krzywe funkcji dla danych wartości.

Właściwości tangentsoid i kotangentsoid

Wykresy funkcji stycznej i cotangens różnią się znacznie od funkcji sinus i cosinus. Wartości tg i ctg są względem siebie odwrotne.

  1. Y = brązowy x.
  2. Styczna dąży do wartości y przy x = π/2 + πk, ale nigdy ich nie osiąga.
  3. Najmniejszy dodatni okres tangentoidy to π.
  4. Tg (- x) = - tg x, czyli funkcja jest nieparzysta.
  5. Tg x = 0, dla x = πk.
  6. Funkcja jest rosnąca.
  7. Tg x › 0, dla x ϵ (πk, π/2 + πk).
  8. Tg x ‹ 0, dla x ϵ (— π/2 + πk, πk).
  9. Pochodna (tg x)’ = 1/cos 2 ⁡x.

Rozważ graficzny obraz kotangentoidy poniżej w tekście.

Główne właściwości kotangentoidów:

  1. Y = łóżeczko x.
  2. W przeciwieństwie do funkcji sinus i cosinus, w tangentoidzie Y może przyjmować wartości zbioru wszystkich liczb rzeczywistych.
  3. Kotangentoida dąży do wartości y przy x = πk, ale nigdy ich nie osiąga.
  4. Najmniejszy dodatni okres kotangentoidy to π.
  5. Ctg (- x) = - ctg x, czyli funkcja jest nieparzysta.
  6. Ctg x = 0, dla x = π/2 + πk.
  7. Funkcja jest malejąca.
  8. Ctg x › 0, dla x ϵ (πk, π/2 + πk).
  9. Ctg x ‹ 0, dla x ϵ (π/2 + πk, πk).
  10. Pochodna (ctg x)’ = - 1/sin 2 ⁡x Poprawnie

Pojęcie rozwiązywania równań trygonometrycznych.

  • Aby rozwiązać równanie trygonometryczne, przekształć je w jedno lub więcej podstawowych równań trygonometrycznych. Rozwiązanie równania trygonometrycznego ostatecznie sprowadza się do rozwiązania czterech podstawowych równań trygonometrycznych.
  • Rozwiązywanie podstawowych równań trygonometrycznych.

    • Istnieją 4 typy podstawowych równań trygonometrycznych:
    • grzech x = a; ponieważ x = a
    • tan x = a; ctg x = a
    • Rozwiązywanie podstawowych równań trygonometrycznych polega na sprawdzaniu różnych pozycji x na okręgu jednostkowym, a także na korzystaniu z tabeli przeliczeniowej (lub kalkulatora).
    • Przykład 1. grzech x = 0,866. Korzystając z tabeli przeliczeniowej (lub kalkulatora) otrzymasz odpowiedź: x = π/3. Okrąg jednostkowy daje inną odpowiedź: 2π/3. Pamiętaj: wszystkie funkcje trygonometryczne są okresowe, co oznacza, że ​​ich wartości się powtarzają. Na przykład okresowość sin x i cos x wynosi 2πn, a okresowość tg x i ctg x wynosi πn. Dlatego odpowiedź jest zapisana w następujący sposób:
    • x1 = π/3 + 2πn; x2 = 2π/3 + 2πn.
    • Przykład 2. cos x = -1/2. Korzystając z tabeli przeliczeniowej (lub kalkulatora) otrzymasz odpowiedź: x = 2π/3. Okrąg jednostkowy daje inną odpowiedź: -2π/3.
    • x1 = 2π/3 + 2π; x2 = -2π/3 + 2π.
    • Przykład 3. tg (x - π/4) = 0.
    • Odpowiedź: x = π/4 + πn.
    • Przykład 4. ctg 2x = 1,732.
    • Odpowiedź: x = π/12 + πn.
  • Przekształcenia stosowane w rozwiązywaniu równań trygonometrycznych.

    • Do transformacji równań trygonometrycznych stosuje się przekształcenia algebraiczne (faktoryzację, redukcję wyrazów jednorodnych itp.) i tożsamości trygonometryczne.
    • Przykład 5: Używając tożsamości trygonometrycznych, równanie sin x + sin 2x + sin 3x = 0 jest konwertowane do równania 4cos x*sin (3x/2)*cos (x/2) = 0. Zatem następujące podstawowe równania trygonometryczne należy rozwiązać: cos x = 0; grzech(3x/2) = 0; cos(x/2) = 0.
    • Znajdowanie kątów na podstawie znanych wartości funkcji.

      • Zanim nauczysz się rozwiązywać równania trygonometryczne, musisz nauczyć się znajdować kąty, korzystając ze znanych wartości funkcji. Można to zrobić za pomocą tabeli przeliczeniowej lub kalkulatora.
      • Przykład: cos x = 0,732. Kalkulator poda odpowiedź x = 42,95 stopnia. Okrąg jednostkowy da dodatkowe kąty, których cosinus również wynosi 0,732.
    • Odłóż roztwór na okręgu jednostkowym.

      • Można nakreślić rozwiązania równania trygonometrycznego na okręgu jednostkowym. Rozwiązaniami równania trygonometrycznego na okręgu jednostkowym są wierzchołki wielokąta foremnego.
      • Przykład: Rozwiązania x = π/3 + πn/2 na okręgu jednostkowym reprezentują wierzchołki kwadratu.
      • Przykład: Rozwiązania x = π/4 + πn/3 na okręgu jednostkowym reprezentują wierzchołki sześciokąta foremnego.
    • Metody rozwiązywania równań trygonometrycznych.

      • Jeżeli dane równanie trygonometryczne zawiera tylko jedną funkcję trygonometryczną, rozwiąż to równanie jako podstawowe równanie trygonometryczne. Jeżeli w danym równaniu znajdują się dwie lub więcej funkcji trygonometrycznych, wówczas istnieją 2 metody rozwiązania takiego równania (w zależności od możliwości jego przekształcenia).
        • Metoda 1.
      • Przekształć to równanie na równanie postaci: f(x)*g(x)*h(x) = 0, gdzie f(x), g(x), h(x) są podstawowymi równaniami trygonometrycznymi.
      • Przykład 6. 2cos x + sin 2x = 0. (0< x < 2π)
      • Rozwiązanie. Używając wzoru na podwójny kąt sin 2x = 2*sin x*cos x, zamień sin 2x.
      • 2cos x + 2*sin x*cos x = 2cos x*(sin x + 1) = 0. Teraz rozwiąż dwa podstawowe równania trygonometryczne: cos x = 0 i (sin x + 1) = 0.
      • Przykład 7. cos x + cos 2x + cos 3x = 0. (0< x < 2π)
      • Rozwiązanie: Korzystając z tożsamości trygonometrycznych, przekształć to równanie na równanie postaci: cos 2x(2cos x + 1) = 0. Teraz rozwiąż dwa podstawowe równania trygonometryczne: cos 2x = 0 i (2cos x + 1) = 0.
      • Przykład 8. grzech x - grzech 3x = cos 2x. (0< x < 2π)
      • Rozwiązanie: Korzystając z tożsamości trygonometrycznych, przekształć to równanie na równanie postaci: -cos 2x*(2sin x + 1) = 0. Teraz rozwiąż dwa podstawowe równania trygonometryczne: cos 2x = 0 i (2sin x + 1) = 0 .
        • Metoda 2.
      • Przekształć podane równanie trygonometryczne na równanie zawierające tylko jedną funkcję trygonometryczną. Następnie zamień tę funkcję trygonometryczną na jakąś nieznaną, na przykład t (sin x = t; cos x = t; cos 2x = t, tan x = t; tg (x/2) = t, itd.).
      • Przykład 9. 3sin^2 x - 2cos^2 x = 4sin x + 7 (0< x < 2π).
      • Rozwiązanie. W tym równaniu zamień (cos^2 x) na (1 - sin^2 x) (zgodnie z tożsamością). Przekształcone równanie to:
      • 3sin^2 x - 2 + 2sin^2 x - 4sin x - 7 = 0. Zamień sin x na t. Teraz równanie wygląda następująco: 5t^2 - 4t - 9 = 0. Jest to równanie kwadratowe, które ma dwa pierwiastki: t1 = -1 i t2 = 9/5. Drugi pierwiastek t2 nie spełnia zakresu funkcji (-1< sin x < 1). Теперь решите: t = sin х = -1; х = 3π/2.
      • Przykład 10. tg x + 2 tg^2 x = ctg x + 2
      • Rozwiązanie. Zamień tg x na t. Przepisz pierwotne równanie w następujący sposób: (2t + 1)(t^2 - 1) = 0. Teraz znajdź t, a następnie znajdź x dla t = tan x.