Диагностика митохондриальных заболеваний. Митохондриальная патология у детей

пост обновлен 28.02.2019

Введение (особенности митохондрий человека) . Особенностью функционирования митохондрий является наличие собственного митохондриального генома - кольцевой митохондриальной ДНК (мтДНК), содержащей 37 генов, продукты которых участвуют в процессе выработки энергии в дыхательной цепи митохондрий. мтДНК располагается во внутренней мембране митохондрий и состоит из пяти сопряженно функционирующих ферментных комплексов, которые в целом насчитывают 86 субъединиц. В основном они кодируются ядерными генами (яДНК), но семь субъединиц первого ферментного комплекса (ND1, 2, 3, 4, 4L, 5, 6), один - третьего (цитохром b), три - четвертого (COI, COII, COIII) и две - пятого (АТФазы 6 и 8) кодируются структурными генами мтДНК. Таким образом, в обеспечении многообразных биохимических функций митохондрий участвуют ферментные комплексы (т.е. белки), кодируемые как ядерными (яДНК), так и митохондриальными генами (мтДНК).

Обратите внимание ! Основными биохимическими процессами, которые имеют отношение к энергетическому обмену и происходят в митохондриях, являются: цикл трикарбоновых кислот (цикл Кребса), бета-окисление жирных кислот, карнитиновый цикл, транспорт электронов в дыхательной цепи и окислительное фосфорилирование. Любой из указанных процессов может нарушаться и быть причиной митохондриальной недостаточности.

Причина возникновения митохондриальных болезней (далее МБ). Главные свойства митохондриального генома - это цитоплазматическое наследование генов, отсутствие рекомбинаций (т.е. реорганизации генетического материала посредством обмена отдельными сегментами, участками, двойных спиралей ДНК) и высокая скорость мутирования. Митохондриальный геном отличается выраженной нестабильностью и высокой скоростью нуклеотидных замен, в среднем в 10 - 17 раз выше скорости мутирования ядерных генов, и в течение жизни индивида в нем нередко возникают соматические мутации. Непосредственная причина возникновения и развития дисфункции митохондрий кроется в дефектах системы окислительного фосфорилирования, несовершенстве репарационных механизмов, отсутствии гистонов и присутствии свободных радикалов кислорода – побочных продуктов аэробного дыхания.

Для мутаций митохондриального генома характерно явление [!!! ] гетероплазмии, при котором (благодаря специфичности митохондриального наследования) в результате клеточного деления распределение (варьирующее в широких пределах - от 1 до 99%) мутантных мтДНК между дочерними клетками происходит случайно и неравномерно, вследствие чего в дочерних клетках одновременно присутствуют копии мтДНК, несущие нормальный и/или мутантный аллель. При этом различные ткани организма или соседние участки одной и той же ткани могут различаться по степени гетероплазмии, т.е. по степени присутствия и соотношения в клетках организма митохондрий как с мутантной, так и с нормальной мтДНК (в последующих поколениях часть клеток может обладать только нормальной мтДНК, другая часть только мутантной, а третья часть - и тем и другим типом мтДНК). Содержание митохондрий с мутантной мтДНК нарастает постепенно. Благодаря этому «лаг периоду» (от англ. «lag» - запаздывание), будущие пациенты нередко достигают половозрелого возраста (и дают потомство, почти всегда несущее те же мутации в мтДНК). Когда количество мутантных копий мтДНК достигает в клетке определенного порога концентрации, энергетический метаболизм в клетках оказывается значительно нарушенным и проявляется в виде заболевания (обратите внимание: особенностью наследственных МБ зачастую является полное отсутствие каких-либо патологических признаков в начале жизни больного).

Обратите внимание ! Гетероплазмия характеризуется одновременным существованием мутантных и нормальных мтДНК в одной клетке, ткани, органе, что определяет тяжесть, характер и возраст манифестации МБ. Количество измененных мтДНК также может увеличиваться с возрастом под влиянием различных факторов и постепенно достигать уровня, способного вызвать клиническое проявления заболевания.

В соответствии с вышеупомянутыми особенностями двойного генома митохондрий тип наследования МБ может быть различным. Поскольку мтДНК в организме имеет почти исключительно материнское происхождение, при передаче митохондриальной мутации потомству в родословной имеет место материнский тип наследования - болеют все дети больной матери. Если мутация происходит в ядерном гене (яДНК), кодирующем синтез митохондриального белка, заболевание передается по классическим менделевским законам. Иногда мутация мтДНК (обычно - делеция) возникает de novo на ранней стадии онтогенеза, и тогда заболевание проявляется как спорадический случай.

Обратите внимание ! В настоящее время известно более 100 точечных мутаций и несколько сотен структурных перестроек мтДНК, ассоциированных с характерными нейромышечными и другими митохондриальными синдромами - от летальных в неонатальном периоде жизни до заболеваний с поздним началом.

Дефиниция . МБ могут быть охарактеризованы как заболевания, обусловленные генетическими и структурно-биохимическими дефектами митохондрий и сопровождающиеся нарушением тканевого дыхания и, как следствие, системным дефектом энергетического метаболизма, вследствие чего поражаются в различной комбинации наиболее энергозависимые ткани и органы-мишени: мозг, скелетные мышцы и миокард (митохондриальные энцефаломиопатии), поджелудочная железа, орган зрения, почки, печень. Клинически нарушения в указанных органах могут реализоваться в любом возрасте. При этом гетерогенность симптоматики затрудняет клиническую диагностику этих заболеваний. Необходимость исключения МБ возникает при наличии мультисистемных проявлений, которые не укладываются в обычный патологический процесс. Частоту дисфункции дыхательной цепи оценивают от 1 на 5 - 10 тыс. до 4 - 5 на 100 тыс. новорожденных.

Семиотика . Нервно-мышечная патология при МБ обычно бывает представлена деменцией, судорогами, атаксией, оптической нейропатией, ретинопатией, нейросенсорнуой глухотой, периферической нейропатией, миопатией. Однако около 1/3 пациентов с МБ имеют нормальный интеллект, а нервно-мышечные проявления у них отсутствуют. К МБ относят, в частности, энцефалокардиомиопатию Kearns - Sayre (пигментный ретинит, наружная офтальмоплегия, полная блокада сердца); синдром MERRF (миоклонус-эпилепсия, «рваные» красные волокна); (митохондриальная энцефало-миопатия, лактат-ацидоз, инсультоподобные эпизоды); синдром Pearson (энцефаломиопатия, атаксия, деменция, прогрессирующая наружная офтальмоплегия); синдром NAPR (невропатия, атаксия, пигментный ретинит); и некоторые формы офтальмопатической миопатии. Все эти формы объединены выраженным в той или иной степени миопатическим синдромом.

Обратите внимание ! Двумя основными клиническими признаками МБ являются увеличение с течением времени числа вовлеченных в патологический процесс органов и тканей, а также практически неизбежное поражение центральной нервной системы. Полиморфизм клинических проявлений, включая поражение органов, на первый взгляд физиологически и морфологически не связанных, в сочетании с различными сроками манифестации и неуклонным прогрессированием симптоматики заболевания с возрастом и позволяет заподозрить [генетическую] мутацию мтДНК.

Обратите внимание ! В клинической практике большое значение имеет умение дифференцировать клиническую картину МБ от более распространенных соматических, аутоиммунных, эндокринных и других патологических состояний, большинство из которых поддаются лечению. Необходимо проводить тщательную оценку семейного анамнеза, данных рутинных клинических и лабораторно-инструментальных методов обследования, прежде чем назначать пациенту специфические генетические и биохимические тесты, направленные на поиск митохондриальной патологии.

Диагностика . Алгоритм диагностики любой МБ должен включать следующие этапы: [1 ] выявление типичной клинической картины митохондриального синдрома либо «необъяснимой» мультисистемности поражения и наследственного анамнеза, подтверждающего материнский тип наследования; [2 ] дальнейший диагностический поиск должен быть направлен на обнаружение общих маркеров митохондриальной дисфункции: повышение уровня лактата/пирувата в сыворотке крови и цереброспинальной жидкости, нарушение углеводного, белкового, аминокислотного обменов, а также клинической картины с вовлечением в патологический процесс как минимум трех из указанных систем: ЦНС, сердечно-сосудистой системы, мышечной, эндокринной, почечной, органов зрения и слуха; [3 ] при клинических и подтвержденных лабораторно-инструментальных признаках митохондриальной патологии проводят ПЦР-анализ лимфоцитов крови для прицельного поиска точковых мутаций мтДНК; исследование, которое считается золотым стандартом диагностики МБ [цитопатий], - биопсия скелетных мышц с проведением гистохимического, электронно-микроскопического, иммунологического и молекулярно-генетического анализов, характерные изменения в которых будут при любой МБ (см. далее); [5 ] наиболее чувствительными тестами для диагностики МБ служат методы оценки уровня гетероплазмии патологических мтДНК в различных органах и тканях: флуоресцентная ПЦР, клонирование, денатурирующая высокоразрешающая жидкостная хроматография, секвенирование, саузерн-блот-гибридизация и т.д.

Гистохимическое исследование биоптатов мышц пациентов, включающее окраску трихромом по методу Гомори, демонстрирует изменения, характерные для МБ, - рваные красные волокна миофибриллы, которые содержат большое количество пролиферирующих и поврежденных митохондрий, образующих агломераты по периферии мышечного волокна. При этом количество рваных красных волокон в биопсии должно быть ≥ 2%. Ферменто-гистохимический анализ показывает дефицит цитохром-С-оксидазы в 2 и 5% миофибрилл (для пациентов моложе 50 и старше 50 лет) их общего числа в биоптатах. Гистохимический анализ сукцинатдегидрогеназной (СДГ) активности демонстрирует CДГ-положительное окрашивание миофибрилл – рваные синие волокна (ragged blue fibers), что в сочетании с СДГ-позитивным окрашиванием стенок артерий, кровоснабжающих мышцы, свидетельствует о высокой степени повреждения митохондрий миоцитов. При проведении электронной микроскопии биоптатов мышц определяют патологические включения, структурные перестройки митохондрий, изменение их формы, размера и числа.

Обратите внимание ! Несмотря на значительный прогресс, достигнутый с момента открытия генетических мутаций мтДНК, большинство из используемых в клинической практике диагностических методов обладают низкой степенью специфичности в отношении отдельных МБ. Поэтому диагностические критерии для той или иной МБ, в первую очередь, складываются из сочетания специфической клинической и морфологической картин.

Принципы лечения . Терапия МБ (цитопатий) носит исключительно симптоматический характер и направлена на снижение скорости прогрессирования заболевания, а также улучшение качества жизни пациентов. С этой целью больным назначают стандартную комбинацию препаратов, включающую коэнзим Q10, идебенон - синтетический аналог СоQ10, креатин, фолиевую кислоту, витамины В2, В6, В12 и другие лекарственные средства, улучшающие окислительно-восстановительные реакции в клетках (препараты-переносчики электронов в дыхательной цепи и кофакторы энзимных реакций энергетического обмена). Эти соединения стимулируют синтез молекул АТФ и снижают активность свободно-радикальных процессов в митохондриях. Между тем, по данным систематического обзора, большинство из препаратов, обладающих антиоксидантным и метаболическим действием и применяемых при МБ, не оценивали в масштабных рандомизированных плацебо-контролируемых исследованиях. Поэтому сложно оценить выраженность их терапевтического эффекта и наличие значительных побочных эффектов.

Подробнее о МБ в следующих источниках :

статья «Нервно-мышечная патология при митохондриальных болезнях» Л.А. Сайкова, В.Г. Пустозеров; Санкт Петербургская медицинская академия последипломного образования Росздрава (журнал «Вестник Санкт-Петербургской медицинской академии последипломного образования» 2009) [читать ];

статья «Хроническиe заболевания невоспалительного генезa и мутации митохондриального генома человека» К.Ю. Митрофанов, А.В. Желанкин, М.А. Сазонова, И.А. Собенин, А.Ю. Постнов; Инновационный центр Сколково. Научно-исследовательский институт атеросклероза, Москва; ГБОУ Научно-исследовательский институт общей патологии и патофизиологии РАМН, Москва; Институт клинической кардиологии им. А.Л.Мясникова ФГБУ РКНПК Минздравсоцразвития РФ (журнал «Кардиологический вестник» №1, 2012) [читать ];

статья «Митохондриальная днк и наследственная патология человека» Н.С. Прохорова, Л.А. Демиденко; Кафедра медицинской биологии, ГУ «Крымский государственный медицинскый университет им. С.И. Георгиевского», г. Симферополь (журнал «Таврический медико-биологический вестник» №4, 2010) [читать ];

статья «Митохондриальный геном и митохондриальные заболевания человека» И.О. Мазунин, Н.В. Володько, Е.Б. Стариковская, Р.И. Сукерник; Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск (журнал «Молекулярная биология» №5, 2010) [читать ];

статья «Перспективы митохондриальной медицины» Д.Б. Зоров, Н.К. Исаев, Е.Ю. Плотников, Д.Н. Силачев, Л.Д. Зорова, И.Б. Певзнер, М.А. Моросанова, С.С. Янкаускас, С.Д. Зоров, В.А. Бабенко; Московский государственный университет им. М.В. Ломоносова, Институт физико-химической биологии им. А.Н. Белозерского, НИИ Митоинженерии, Лазерный Научный Центр, факультет биоинженерии и биоинформатики; Российский национальный исследовательский медицинский университет им. Н.И. Пирогова (журнал «Биохимия» №9, 2013) [читать ];

статья «Инсульты при митохондриальных заболеваниях» Н.В. Пизова; Кафедра нервных болезней с курсами нейрохирургии и медицинской генетики ГБОУ ВПО «Ярославская государственная медицинская академия» (журнал «Неврология, нейропсихиатрия, психосоматика» №2, 2012) [читать ];

статья «Диагностика и профилактика ядерно-кодируемых митохондриальных заболеваний у детей» Е.А. Николаева; Научно-исследовательский клинический институт педиатрии, Москва (журнал «Российский вестник перинатологии и педиатрии» №2, 2014) [читать ];

статья «Эпилепсия у детей с митохондриальными заболеваниями: особенности диагностики и лечения» Заваденко Н.Н., Холин А.А.; ГБОУ ВПО Российский национальный исследовательский медицинский университет им. Н.И. Пирогова Минздравсоцразвития России, Москва (журнал «Эпилепсия и пароксизмальные состояния» №2, 2012) [читать ];

статья «Митохондриальная патология и проблемы патогенеза психических нарушений» В.С. Сухоруков; Московский НИИ педиатрии и детской хирургии Росмедтехнологий (Журнал неврологии и психиатрии, №6, 2008) [читать ];

статья «Алгоритм диагностики митохондриальных энцефаломиопатий» С.Н. Иллариошкин (журнал «Нервные болезни» №3, 2007) [читать ];

статья «Актуальные вопросы лечения митохондриальных нарушений» В.С. Сухоруков; ФГБУ «Московский НИИ педиатрии и детской хирургии» Минздрава России (журнал «Эффективная фармакотерапия. Педиатрия» №4, 2012 [читать ];

статья «Лейкоэнцефалопатия с преимущественным поражением ствола мозга, спинного мозга и повышенным лактатом при МР-спектроскопии (клиническое наблюдение)» В.И. Гузева, Е. А. Ефет, О. М. Николаева; Санкт-Петербургский педиатрический медицинский университет, Санкт-Петербург, Россия (журнал «Нейрохирургия и неврология детского возраста» №1, 2013) [читать ];

учебно-методическое пособие для студентов третьего курса медико-диагностического факультета медицинских вузов «Наследственные митохондриальные заболевания» Т.С. Угольник, И. В. Манаенкова; Учреждение образования «Гомельский государственный медицинский университет», кафедра патологической физиологии, 2012 [читать ];

пост: Митохондриальне заболевания (нейродегенерация) - на сайт c 17-ю ссылками на источники (статьи, презентации и т.д.) .


© Laesus De Liro

Митохондриальные болезни, и в частности митохондриальный синдром, который может проявляться поражениями ЦНС, сердца и патологиями скелетной мускулатуры, сегодня являются одним из важнейших разделов нейропедиатрии.

Митохондрия - что это?

Как многие помнят из школьного курса биологии, митохондрия представляет собой одну из клеточных органелл, чьей основной функцией является образование в процессе клеточного дыхания молекулы АТФ. Кроме того, в ней происходит проходит цикл трикарбоновых кислот и множество других процессов. Исследования, проведенные в конце XX века, позволили выявить ключевое значение митохондрий еще и в таких процессах, как чувствительность к лекарствам, старение (запрограммированная гибель клеток). Соответственно, нарушение их функций приводит к недостаточности энергообмена, и как следствие, повреждению и гибели клетки. Особенно ярко эти нарушения проявляются в клетках нервной системы и скелетной мускулатуры.

Митохондриология

Генетические исследования позволили определить, что митохондрии обладают собственным геномом, отличным от генома ядра клетки, и нарушения в ее функционировании чаще всего связаны с происходящими там мутациями. Все это позволило выделить научное направление, изучающее заболевания, связанные с нарушениями функций митохондрий, - митохондриальные цитопатии. Они могут быть как спорадическими, так и врожденными, наследующимися по линии матери.

Симптоматика

Митохондриальный синдром может проявиться в различных системах человека, но наиболее выраженные проявления получают неврологические симптомы. Это связано с тем, что нервная ткань наиболее сильно подвержена влиянию гипоксии. Характерными признаками, позволяющими подозревать митохондриальный синдром при поражении скелетной мускулатуры, являются гипотония, неспособность адекватно переносить физические нагрузки, различные миопатии, офтальмопарез (паралич птоз. Со стороны нервной системы могут быть инсультоподобные проявления, судороги, пирамидные расстройства, расстройства психики. Как правило, митохондриальный синдром у ребенка всегда проявляется задержкой развития или утратой уже полученных навыков, нарушениями психомоторики. Со стороны эндокринной системы не исключено развитие диабета, нарушений функций щитовидной и поджелудочной желез, задержка роста, полового созревания. Поражения сердца могут развиваться как на фоне патологий других органов, так и изолированно. Митохондриальный синдром в этом случае представлен кардиомиопатией.

Диагностика

Митохондриальные болезни чаще всего обнаруживаются в или на первых годах жизни ребенка. По данным зарубежных исследований, эта патология диагностируется у одного новорожденного из 5 тысяч. Для диагностики проводят комплексное клиническое, генетическое, инструментальное, биохимическое и молекулярное обследование. На сегодняшний день существует целый ряд методов, позволяющих определить эту патологию.

  1. Электромиография - при нормальных результатах на фоне резко выраженной мышечной слабости у пациента позволяет подозревать митохондриальные патологии.
  2. Лактоацидоз очень часто сопровождает митохондриальные болезни. Конечно, только его присутствия недостаточно для постановки диагноза, но измерение уровня молочной кислоты в крови после физической нагрузки может быть очень информативным.
  3. Биопсия и гистохимическое исследование полученного биоптата является наиболее информативным.
  4. Хорошие результаты показывают одновременное применение световой и электронной микроскопии скелетных мышц.

Одним из самых частых заболеваний детского возраста, связанных с генетическими изменениями митохондрий, является синдром Лея, впервые описанный в 1951 году. Первые признаки появляются в возрасте от одного до трех лет, но возможны и более ранние манифестации - на первом месяце жизни или, напротив, после семи лет. Первые проявления заключаются в задержке развития, снижении массы тела, потере аппетита, повторной рвоте. Со временем присоединяется неврологическая симптоматика - нарушение тонуса мышц (гипотония, дистония, гипертонус), судороги, нарушение координации.

Болезнь затрагивает органы зрения: развивается дегенерация сетчатки, глазодвигательные нарушения. У большинства детей заболевание постепенно прогрессирует, нарастают признаки пирамидальных расстройств, появляются расстройства глотания, дыхательной функции.

Одним из детей, страдающих такой патологией, стал Пугачев Ефим, митохондриальный синдром которому был диагностирован в 2014 году. Его мама, Елена, просит помощи у всех неравнодушных людей.

Прогноз, к сожалению, на сегодняшний день чаще всего бывает неутешительным. Это связано как с поздней диагностикой болезни, отсутствием детальной информации о патогенезе, тяжелым состоянием пациентов, связанным с мультисистемностью поражений, так и с отсутствием единого критерия оценки эффективности терапии.

Таким образом, лечение подобных заболеваний находится еще в стадии разработки. Как правило, оно сводится к симптоматической и поддерживающей терапии.

Возникновение этих заболеваний связано с изменением ДНК митохондрий. Геном митохондриальной ДНК полностью расшифрован. В нем есть гены рибосомальных РНК, 22 тр-РНК и 13 полипептидов, участвующих в реакциях окислительного фосфорилирования. Большинство митохондриальных белков кодируются генами ядерной ДНК, транслируются в цитоплазме, а затем поступают в митохондрии. ДНК митохондрий наследуется по материнской линии. В цитоплазме яйцеклетки содержатся тысячи митохондрий, в то время как митохондрии сперматозоида не оказываются в зиготе. Поэтому мужчины наследуют мт-ДНК от своих матерей, но не передают е своим потомкам.

В каждой митохондрии содержится 10 и более молекул ДНК. Обычно все копии мт-ДНК идентичны. Иногда, однако, в мт-ДНК возникают мутации, которые могут передаваться как дочерним митохондриям, так и дочерним клеткам.

Клинически мутации могут проявить себя в виде различных симптомов в любом органе или ткани и в любом возрасте. Наиболее энергозависимыми, а поэтому уязвимыми являются мозг, сердце, скелетные мышцы, эндокринная системы, печень. Поражения нервной системы обычно сопровождаются судорогами, нарушение координации (атаксия), снижением интеллекта, нейросенсорной глухотой.

Примеры наследственных болезней: атрофия дисков зрительных нервов Лебера (острая потеря центрального зрения, может проявиться в любом возрасте), митохондриальная энцефаломиопатия, синдром миоклонической эпилепсии и рваных мышечных волокон.

Мультифакторные заболевания

Возникают у лиц с соответствующим сочетанием предрасполагающих аллелей, имеет место полиморфизм клинических признаков, заболевания проявляются в любом возрасте, в патологический процесс может быть вовлечена любая система или орган. Примеры: гипертоническая болезнь, атеросклероз, язвенная болезнь, шизофрения, эпилепсия, глаукома, псориаз, бронхиальная астма и др.

Особенности :

    Высокая частота встречаемости в популяции

    Существование различных клинических форм

    Зависимость степени риска для родственников больного:

Чем реже болезнь в популяции, тем выше риск для родственников пробанда

Чем сильнее выражена болезнь у пробанда, тем выше риск заболевания у его родственника

Риск для родственников пробанда будет выше, если имеется другой больной кровный родственник.

Медико-генетическое консультирование

Это один из видов специализированной медицинской помощи населению. В консультации работают врачи-генетики, а также другие специалисты (акушеры, педиатры, эндокринологи, невропатологи). Основные задачи консультации:

Оказание помощи врачам в постановке диагноза наследственного заболевания

Определение вероятности рождения ребенка с наследственной патологией

Объяснения родителям смысла генетического риска

Этапы консультирования:

1.Обследование больного и постановка диагноза наследственного заболевания . Для этого используются различные методы: цитогенетический, биохимический, ДНК-диагностики. Показаниями для консультирования являются:

Установленная или подозреваемая наследственная болезнь в семье

Рождение ребенка с пороками развития

Повторные спонтанные аборты, мертворождения, бесплодие

Отставание детей в психическом и физическом развитии

Нарушение полового развития

Кровнородственные браки

Возможное воздействие тератогенов в первые 3 месяца беременности

2. Определение риска рождения больного ребенка . При определении риска возможны следующие ситуации:

а) при моногенно наследуемых заболеваниях расчет риска основывается на законах Г.Менделя. При этом учитываются генотип родителей и особенности проявление гена (пенентрантность и экспрессивность).

б) при полигенно наследуемых заболеваниях (болезни с наследственной предрасположенностью) для расчета риска используют специальные таблицы и при этом учитываются следующие особенности:

Чем реже встречается болезнь в популяции, тем выше риск для родственников пробанда

Чем сильнее выражена болезнь у пробанда, тем выше риск заболевания у его родственников

Риск для родственников пробанда будет выше, если имеется другой больной кровный родственник

в) спорадические случаи заболевания: у фенотипически здоровых родителей рождается больной ребенок, при этом отсутствуют данные в сходной патологии у родственников. Причины:

Генеративные мутации у кого-то из родителей или соматические мутации на ранних стадиях эмбрионального развития

Переход рецессивного гена в гомозиготное состояние

Сокрытие одним из родителей семейной патологии.

3. Заключение консультации и советы родителям. Генетический риск до 5% рассматривается как низкий и не является противопоказанием для деторождения. Риск от 6 до 20 % - определяется как средний и расценивается как противопоказание к зачатию или как показание к прерыванию беременности. Независимо от степени риска целесообразно проведение пренатальной диагностики.

Пренатальная (дородовая) диагностика.

Многие болезни можно выявит еще до рождения ребенка. При обнаружении тяжелых заболеваний у плода, врач предлагает семье искусственное прерывание беременности. Окончательное решение вопроса об этом должна принять семья. К методам дородовой диагностики относятся:

1. Биопсия ворсин хориона. Производится на 7-9 неделе беременности. Служит для выявления хромосомных дефектов, активности ферментов с целью диагностики наследственных болезней обмена и ДНК- диагностики.

2. Амниоцентез (взятие околоплодной жидкости с содержащимися в ней клетками). Производится начиная с 12-14 недель беременности.

3. Кордоцентез (взятие крови из пупочных сосудов) производится на 20-25 неделе беременности и используется для тех же целей.

4. Анализ крови матери. Выявление α-фетопротеина (белок, который вырабатывается печенью плода и проникает через плацентарный барьер в кровь матери). Увеличение его в несколько раз на 16 неделе беременности может указывать на дефекты нервной трубки. Снижение его концентрации по отношении к норме может указывать на синдром Дауна.

5. Ультразвуковое исследование плода производится на всех сроках беременности. УЗИ исследование – главный метод визуального определения пороков развития плода и состояния плаценты. УЗИ исследование рекомендуется проводить всем женщинам не менее 2 раз в течение беременности.

Митохондриальные болезни - большая гетерогенная группа наследственных заболеваний и патологических состояний, обусловленных нарушениями структуры, функций митохондрий и тканевого дыхания. По данным зарубежных исследователей, частота этих заболеваний у новорождённых составляет 1:5000.

Код по МКБ-10

Нарушения обмена веществ, класс IV, Е70-Е90.

Изучение природы этих патологических состояний было начато в 1962 г., когда группа исследователей описала больную 30 лет с нетиреоидным гиперметаболизмом, мышечной слабостью и высоким уровнем основного обмена. Было высказано предположение о связи этих изменений с нарушением процессов окислительного фосфорилирования в митохондриях мышечной ткани. В 1988 г. другие учёные впервые сообщили об обнаружении мутации в митохондриальной ДНК (мтДНК) у больных с миопатией и оптической нейропатией. Спустя 10 лет были найдены мутации ядерных генов, кодирующих комплексы дыхательной цепи у детей раннего возраста. Таким образом, сформировалось новое направление в структуре детских болезней - митохондриальная патология, митохондриальные миопатии, митохондриальные энцефаломиопатии.

Митохондрии - внутриклеточные органеллы, присутствующие в виде нескольких сотен копий во всех клетках (кроме эритроцитов) и продуцирующие АТФ. Длина митохондрии 1,5 мкм, ширина 0,5 мкм. Их обновление происходит непрерывно на протяжении всего клеточного цикла. Органелла имеет 2 мембраны - внешнюю и внутреннюю. От внутренней мембраны внутрь отходят складки, называемые кристами. Внутреннее пространство заполняет матрикс - основное гомогенное или тонкозернистое вещество клетки. В нём содержатся кольцевая молекула ДНК, специфические РНК, гранулы солей кальция и магния. На внутренней мембране фиксированы ферменты, участвующие в окислительном фосфорилировании (комплекс цитохромов b, с, а и аЗ) и переносе электронов. Это энергопреобразующая мембрана, которая превращает химическую энергию окисления субстратов в энергию, которая накапливается в виде АТФ, креатинфосфата и др. На наружной мембране сосредоточены ферменты, участвующие в транспорте и окислении жирных кислот. Митохондрии способны к самовоспроизведению.

Основная функция митохондрий - аэробное биологическое окисление (тканевое дыхание с использованием клеткой кислорода) - система использования энергии органических веществ с поэтапным её высвобождением в клетке. В процессе тканевого дыхания происходит последовательный перенос ионов водорода (протонов) и электронов через различные соединения (акцепторы и доноры) на кислород.

В процессе катаболизма аминокислот, углеводов, жиров, глицерола образуются углекислый газ, вода, ацетил-коэнзим А, пируват, оксалоацетат, кетоглутарат, которые затем вступают в цикл Кребса. Образовавшиеся ионы водорода акцептируются адениннуклеотидами - адениновыми (NAD +) и флавиновыми (FAD +) нуклеотидами. Восстановленные коферменты NADH и FADH окисляются в дыхательной цепи, которая представлена 5 дыхательными комплексами.

В процессе переноса электронов накапливается энергия в виде АТФ, креатин-фосфата и других макроэргических соединений.

Дыхательная цепь представлена 5 белковыми комплексами, которые осуществляют весь сложный процесс биологического окисления (табл. 10-1):

  • 1-й комплекс - NADH-убихинон-редуктаза (этот комплекс состоит из 25 полипетидов, синтез 6 из которых кодируется мтДНК);
  • 2-й комплекс - сукцинат-убихинон-оксидоредуктаза (состоит из 5-6 полипептидов, включая сукцинатдегидрогеназу, кодируется только мтДНК);
  • 3-й комплекс - цитохром С-оксидоредуктаза (переносит электроны от коэнзима Q на комплекс 4, состоит из 9-10 белков, синтез одного из них кодируется мтДНК);
  • 4-й комплекс - цитохромоксидаза [состоит из 2 цитохромов (а и аЗ), кодируется мтДНК];
  • 5-й комплекс - митохондриальная Н + -АТФаза (состоит из 12-14 субъединиц, осуществляет синтез АТФ).

Кроме того, электроны 4 жирных кислот, подвергающихся бета-окислению, переносит электронпереносящий белок.

В митохондриях осуществляется ещё один важный процесс - бета-окисление жирных кислот, в результате которого образуется ацетил-КоА и эфиры карнитина. В каждом цикле окисления жирных кислот происходят 4 энзиматические реакции.

Первый этап обеспечивают ацил-КоА-дегидрогеназы (коротко-, средне- и длинноцепочечные) и 2 переносчика электронов.

В 1963 г. было установлено, что митохондрии имеют собственный уникальный геном, наследуемый по материнской линии. Он представлен единственной небольшой кольцевой хромосомой длиной 16 569 п.н., кодирующей 2 рибосомальные РНК, 22 транспортные РНК и 13 субъединиц ферментных комплексов электронно-транспортной цепи (семь из них относятся к комплексу 1, один - к комплексу 3, три - к комплексу 4, два - к комплексу 5). Большинство митохондриальных белков, участвующих в процессах окислительного фосфорилирования (около 70), кодируются ядерной ДНК и лишь 2% (13 полипетидов) синтезируются в митохондриальном матриксе под контролем структурных генов.

Строение и функционирование мтДНК отличается от ядерного генома. Во-первых, она не содержит интронов, что обеспечивает высокую плотность генов по сравнению с ядерной ДНК. Во-вторых, большинство мРНК не содержит 5"-3"-нетранслируемые последовательности. В-третьих, мтДНК имеет D-петлю, которая представляет собой её регуляторную область. Репликация представляет собой двухступенчатый процесс. Выявлены также отличия генетического кода мтДНК от ядерной. Особо следует отметить, что существует большое число копий первой. Каждая митохондрия содержит от 2 до 10 копий и более. Учитывая тот факт, что клетки могут иметь в своём составе сотни и тысячи митохондрий, возможно существование до 10 тыс. копий мтДНК. Она весьма чувствительна к мутациям и в настоящее время идентифицировано 3 типа таких изменений: точковые мутации белков, кодирующих мтДНК-гены (mit- мутации), точковые мутации мтДНК-тРНК-генов (sy/7-мутации) и крупные перестройки мтДНК (р-мутации).

В норме весь клеточный генотип митохондриального генома идентичен (гомоплазмия), однако при возникновении мутаций часть генома остаётся идентичной, а другая - изменённой. Такое явление называется гетероплазмиеи. Проявление мутантного гена происходит тогда, когда количество мутаций достигает определённого критического уровня (порога), после чего наступает нарушение процессов клеточной биоэнергетики. Это объясняет то, что при минимальных нарушениях в первую очередь будут страдать наиболее энергозависмые органы и ткани (нервная система, головной мозг, глаза, мышцы).

Чарли Гард, неизлечимо больной младенец в Великобритании, получает международное внимание, поскольку его родители ищут экспериментальное лечение, которое, как они надеются, может помочь их сыну, чей редкий тип «истощения ДНК» обычно приводит к смерти в первые несколько месяцев жизни. Но что вызывает это состояние и почему оно оказывает такое разрушительное воздействие на организм?

Чарли Гард с родителями

Чарли родился 4 августа 2016 года и был госпитализирован в Большую Ормонд-стрит-больницу в Лондоне с октября, согласно The New York Times. Сообщается, что 11-месячный ребенок не может дышать саме, имеет судороги, слепой и глухой. Его родители хотят отвезти его в Соединенные Штаты на экспериментальное лечение, но врачи не согласились, заявив, что лечение не поможет и только продлит страдания Чарли. Вместо этого в больнице пришли к выводу, что самым гуманным решением будет эвтаназия.

Это дело возобновило дискуссию о правах родителей на обращение со своими детьми. Несколько британских судов встали на сторону больницы. Однако его родители сказали, что больница отложила эвтаназию, чтобы дать им больше времени для прощания с их ребенком.

Энцефаломиопатический митохондриальный синдром истощения ДНК вызван мутациями в генах, которые помогают поддерживать ДНК, обнаруженную внутри митохондрий («электростанции» клеток), которые превращают питательные вещества в энергию и имеют свой собственный набор ДНК.

В случае с Чарли, мутация находится в гене под названием RRM2B, который участвует в создании этой митохондриальной ДНК. Мутация приводит к уменьшению количества митохондриальной ДНК и препятствует нормальной работе митохондрий.

Болезнь влияет на многие органы тела, но особенно на мышцы, мозг и почки, имеющие высокие энергетические потребности. Это может вызвать мышечную слабость, микроцефалию (размер головы меньше, чем у нормального), проблемы с почками, судороги и потерю слуха. Слабость мышц, используемых для дыхания, может привести к серьезным проблемам с дыханием и, в случае с Чарли, потребовалась вентиляция.

Болезнь крайне редкая. До случая Чарли только около 15 младенцев по всему миру имели эту конкретную форму синдрома истощения митохондриальной ДНК.

Симптомы обычно начинаются очень рано. По словам Таймс, Чарли начал показывать признаки, когда ему было всего несколько недель. И дети с этим состоянием обычно не выживают за пределами младенчества. В обзоре 2008 года случаев семи детей с синдромом истощения митохондриальной ДНК из-за мутаций в гене RRM2B все умерли до того, как они достигли 4-месячного возраста.

В соответствии с обзором Вашингтонского университета нет лечения, только управление симптомами, такими как обеспечение питательной поддержки или вентиляция для оказания помощи при дыхании.

Родители Чарли сказали, что хотят, чтобы у их сына было экспериментальное лечение, называемое терапией нуклеозидом, это недоказанное лечение, направленное на материалы ДНК, которые его клетки не могут произвести. Это лечение ранее использовалось для пациентов с менее выраженной формой истощения митохондриальной ДНК, известной как мутация TK2, согласно Times. Однако терапия никогда не использовалась при мутации RRM2B. И даже врач, который изначально согласился помочь Гардам в этом лечении, позже признал, что терапия вряд ли поможет Чарли, потому что ребенок был на поздних стадиях болезни.

Недавно, детская больница Bambino Ges hospital в Италии спросила, может ли ребенок быть перевезен к ним, но Great Ormond Street отказалась переместить его, сославшись на юридические причины, согласно The Washington Post. Министр иностранных дел Великобритании Борис Джонсон также сказал, что это «решение по-прежнему руководствуются экспертным медицинским заключением, поддержанным судами».