Виды и методы дефектоскопии. Классификация

Физические неразрушающие методы получили широкое распространение для дефектоскопии строительных конструкций и соединений. Их применяют и при освидетельствовании и контроле продукции для выявления скрытых дефектов.

Наиболее широкое применение получили следующие методы дефектоскопии: ультразвуковые, рентгеновские, радиационные, магнитные и электромагнитные, капиллярные, радиоволновые, тепловые и оптические.

В ультразвуковых методах дефектоскопии используется свойство ультразвуковых колебаний распространяться в однородной среде и отражаться на границе двух сред или на участке нарушения сплошности. Ультразвуковые методы применяются для дефектоскопии железобетонных и металлических конструкций с целью обнаружения внутренних трещин, пустот, крупных пор, инородных включений и расслоений; используются для контроля сварных соединений из низкоуглеродистых и низколегированных сталей, алюминия и его сплавов, а также пластмасс. Среди методов ультразвуковой дефектоскопии наиболее распространены теневой и импульсный эхо-метод.

Теневой метод основан на ослаблении ультразвукового импульс при наличии дефекта, образующего ультразвуковую тень, внутри конструкции. При сквозном прозвучивании элемента на экране электронно-лучевой трубки изменяется фаза колебаний и уменьшается величина сигнала, поступающего в приемную головку (рис. 4.1 а, б).

Импульсный эхо-метод заключается в посылке и отражении ультразвуковых импульсов от границы изделия или дефекта (рис. 4.1,в , г). Испытательные головки совмещенного типа выполняют поочередно функцию излучателя иприемника ультразвука. В момент посылки импульса на экране электронно-лучевой трубки возникает начальный сигнал - всплеск импульса в левом углу. Донный эхо-сигнал сдвинут вправо относительно начального на время прохождения и отражения импульса от нижней грани элемента. Если на пути импульса встретится дефект, сигнал от него отражается раньше. Высота всплеска и его расположение между начальным и донным сигналами характеризуют размеры и глубину залегания дефекта.

Рис. 4.1. Схема ультразвуковой дефектоскопии:

а - теневым методом при отсутствии дефекта; б - при наличии дефекта;

в - эхо-методом при отсутствии дефекта; г - при наличии дефекта;

Н - начальный сигнал;П - сигнал, поступающий в приемную головку;

Д - донный эхо-сигнал; Дф - сигнал от дефекта

Для ультразвуковой дефектоскопии строительных конструкций применяются и другие методы: резонансный, ударной волны, бегущей волны и свободных колебаний.

Рентгеновские и радиационные методы просвечивания контролируемых элементов рентгеновскими или гамма-лучами (рис. 4.2) и регистрации неравномерности ослабления лучей фотографическими, визуальными или ионизационными способами позволяют определить не только размеры и глубину залегания дефектов, но и их характер по степени почернения рентгеновской пленки, по визуальному сравнению контрастности изображения с эталоном чувствительности или интенсивности излучения, измеряемого ионизационным счетчиком.

Рентгеновские и радиационные методы применяются для дефектоскопии сварных соединений из металлов и пластмасс. Они позволяют выявить непровары, раковины, поры, трещины, шлаковые и газовые включения, изучить структуру металла и, определить тип кристаллической решетки.

Магнитные методы контроля основаны на регистрации магнитных полей, образующихся в зоне дефекта ферромагнитных элементов после их намагничивания (рис. 4.3). Эти методы наиболее часто применяются для контроля качества сварных швов металлических конструкций. Среди магнитных методов наибольшее распространение получили: магнитопорошковый, магнитографический, магнитоферрозондовый, индукционный и магнитополупроводниковый. Для сортировки металла по маркам и выявления внутренних дефектов разработан высокочувствительный электромагнитный метод с возбуждением вихревых токов.

Рис. 4.2. Схема рентгеновской или радиационной дефектоскопии:

1- источник излучения; 2 - диафрагма; 3 - лучи;4 - контролируемый

элемент; 5 - дефект; 6 - рентгеновская пленка; 7 - изображение дефекта на пленке

Рис. 4.3. Магнитный поток в дефектном сварном шве:

1- контролируемый элемент; 2 - сварной шов;

3 - дефект; 4 - магнитные линии; 5 - электромагнит

Капиллярные методы дефектоскопии связаны с проникновением индикаторной жидкости в поверхностные дефекты сварных конструкций из металлов и пластмасс.Эти методы можно разделить на три вида: 1) цветной с применением индикаторной жидкости, дающей красный рисунок дефекта на белом фоне проявителя; 2) люминесцентный с применением люминесцентной жидкости, высвечивающейся под действием ультрафиолетовых лучей; 3) люминесцентно-цветной, позволяющий выявлять дефекты при дневном свете и в ультрафиолетовом свете без применения оптических приборов.

В качестве индикаторных жидкостей применяются различные люминофоры, например Люм-6 или раствор, состоящий из керосина (объемная доля 50 %), бензина (25 %), трансформаторного масла (25 %), анилинового или другого красителя (0,03 %). Удобнее применять жидкости в аэрозольной упаковке. Методика капиллярной дефектоскопии включает: обезжиривание контролируемой поверхности; нанесение индикаторной жидкости с последующим удалением ее излишков; нанесение проявляющей жидкости или сухого проявителя; расшифровки результатов контроля.

Радиоволновые методы дефектоскопии основаны на применении радиоволн сверхвысокой частоты - СВЧ диапазона. Эти методы применяются для контроля качества изделий малой толщины из пластмасс, древесины и бетона.

Радиоволновый контроль осуществляется методами отраженного излучения (эхо-метод) или прошедшего излучения (теневой метод) и позволяет фиксировать в изделии наиболее мелкие дефекты и характер их развития во времени по изменению фазы, амплитуды или особенностям поляризации радиоволн.

Тепловые методы контроля базируются на изменении характера тепловых контрастов при наличии в элементе дефектов. Измерение излучаемого или отражаемого тепла производят инфракрасными радиометрами. Тепловые изображения изучаемого объекта могут быть преобразованы и в видимые при использовании для этого жидкокристаллических соединений, что позволяет применять тепловые методы для качественной оценки контролируемых изделий.

Оптические методы, основанные на регистрации светового или инфракрасного излучения, обладают меньшей чувствительностью по сравнению с радиоволновыми. Однако появление лазеров позволило использовать их для высокоточных измерений.

Голография- это метод получения изображения объекта, основанный на интерференции когерентных волн. Когерентными называют волны одинаковой длины, разность фаз которых не изменяется во времени.

Методами голографии можно зафиксировать как амплитуду, так и фазу колебания, а затем воспроизвести их в любой момент времени в виде голограммы. Для этого луч лазера направляют на исследуемый элемент. Рассеиваемый лазером свет попадает на фотографическую пленку. На нее же отражается и часть световых волн непрозрачным зеркалом (рис. 4.4). За счет наложения световых волн на фотопленке возникает интерференционная картина элемента, остающаяся неизменной, если его положение не меняется. Если полученную голограмму осветить лучом лазера такой же частоты, которая была принята при первоначальном наблюдении, получим восстановленное голографическое изображение элемента. Наложение на исследуемый элемент силового, ультразвукового, теплового или радиоволнового поля приводит к изменению интерференционной картины на голограмме.

Методами голографии можно измерять деформации элемента и фиксировать мельчайшие структурные изменения в материалах. При сопоставлении эталонных голограмм бездефектных изделий с полученными для контролируемых элементов с большой точностью обнаруживаются имеющиеся дефекты.

Рис. 4.4. Схемы:

а - получение галограммы; б - воспроизведение галограммы;

1- лазер; 2 - исследуемый элемент; 3 - зеркало;

4 - голограмма; 5 - воспроизведение элемента; 6 - наблюдатель

ЛЕКЦИЯ 5. НЕРАЗРУШАЮЩИЕ МЕТОДЫ КОНТРОЛЯ

Методы с использованием проникающих сред.

Это - методы для контроля герметичности соединений в резервуарах, газгольдерах, трубопроводах и других подобных сооружениях. Различают методы течеискания и капиллярный.

Методы течеискания.

1. Испытание водой. Ёмкость наполняют водой до отметки, несколько превышающей эксплуатационную, и контролируют состояние швов. В закрытых сосудах давление жидкости можно повысить дополнительным нагнетанием воды или воздуха. Состояние шва можно также проверить сильной струей воды из брандбойта под давлением 1 ат, направленной нормально к поверхности шва.

2. Проба керосином. Благодаря малой вязкости и незначительному по сравнению с водой поверхностному натяжению керосин легко проникает через самые малые поры. Если поверхность шва с одной стороны обильно смочить керосином, а противоположную сторону заранее побелить водным раствором мела, то при наличии дефекта на светлом фоне проявятся характернвые ржавые пятна.

3. Проба сжатым воздухом. Шов с одной стороны обмазывают мыльной водой, а с противоположной обдувают сжатым воздухом под давлением 4 ат.

4. Проба вакуумом. Шов с одной стороны обмазывают мыльной водой. Затем к шву с этой же стороны приставляется металлическая кассета в виде плоской коробки без дна, но окаймленной снизу резиновой прокладкой, с прозрачным верхом. Вакуум-насосом в кассете создается небольшое разряжение.

Капиллярный метод.

На конструкцию наносят специальную жидкость (индикаторный пенетрант), которая под действием капиллярных сил заполняет полости поверхностных дефектов. Затем жидкость удаляют с поверхности конструкции. Если в жидкости был порошок, то он отфильтруется и скопится в дефектах; при использовании жидкости без порошка на конструкцию после удаления жидкости наносится проявитель - мел (в виде порошка или водной суспензии), который реагирует с жидкостью в дефектах и образует индикаторный рисунок высокой цветовой контрастности. При применении реактивов образуются даже рисунки, способные люминисцировать в ультрафиолетовых лучах и при дневном свете.

Акустические методы.

Ультразвуковой метод.

Контроль дефектов производится с помощью сквозного прозвучивания объекта. На участках без дефектов скорость ультразвуковой волны не падает, а на участке с дефектами, содержащими воздух, волна полностью затухает или скорость её заметно уменьшается.

Контроль качества сварных швов стыковых соединенийпроизводится следующим образом. Для обнаружения шлаковых включений, раковин, газовых пор, трещин, непроваров чаще всего применяют эхо-метод, когда источник и приёмник волн совмещены в одном преобразователе (поочередно происходит пуск волны и её приём). Преобразователь - призматический, позволяющий пускать и принимать волну под углом к вертикали. Перемещают преобразователь зигзагообразно вдоль сварного шва. Отражение волны от противоположной грани соединенных сваркой конструктивных элементов (скорость волны, на прямом и обратном пути которой, возможно, встретился дефект) сравнивают с эталонными отражениями (скоростями), полученными на предварительно сваренных эталонных фрагментах соединений с искусственно сделанными дефектами.

Метод акустической эмиссии основан на регистрации акустических волн в металле при его пластическом деформировании.

Регистрируя скорость движения волн, можно обнаружить накопление опасных разрушений (зоны концентрации напряжений) в процессе нагружения конструкций и их эксплуатации. Специальная аппаратура «слышит» треск металла.

Методы с использованием ионизирующих излучений.

Радиографический метод с использованиемрентгеновского или -излучения:

При просвечивании дефект спроецируется на пленку в виде затемненного пятна, по которому можно определить положение дефекта в плане и его величину в направлении, перпендикулярном направлению просвечивания. О величине дефекта в направлении просвечивания судят, сравнивая интенсивность затемнения пятна с интенсивностями затемнений, получившихся на фотопленке от прорезей разной глубины на эталоне чувствительности. Глубину залегания дефекта определяют смещением источника излучения параллельно пленке и пуском потока под новым углом к ней, как это уже описано для бетонных конструкций.

Пуск потока под новым углом преследует еще одну цель: выявить дефекты, вытянутые перпендикулярно первоначальному направлению потока, пересекаемые им по меньшему протяжению и вследствие этого оставшиеся «незамеченными».

Магнитные, электрические и электромагнитные методы.

Магнитные методы основаны на регистрации полей рассеяния над дефектами или на определении магнитных свойств контролируемых изделий. Различают методы: магнитопорошковый, магнитографический, феррозондовый, преобразователя Холла, индукционный и пондеромоторный.

Магнитопорошковый метод. Любая ферромагнитная деталь состоит из очень маленьких самопроизвольно намагниченных областей - доменов. В размагниченном состоянии магнитные поля доменов направлены произвольно и компенсируют друг друга, суммарное магнитное поле доменов равно нулю. Если деталь помещается в намагничивающее поле, то под его влиянием поля отдельных доменов устанавливаются по направлению внешнего поля, образуется результирующее магнитное поле доменов, деталь намагничивается.

Магнитный поток в бездефектной зоне распространяется прямолинейно по направлению результирующего магнитного поля. Если же магнитный поток наталкивается на открытый или скрытый дефект (прослойку воздуха или неферромагнитное включение), то он встречает большое магнитное сопротивление (участок с пониженной магнитной проницаемостью), линии магнитного потока искривляются и часть их выходит на поверхность конструкции. Там, где они выходят из конструкции и входят в неё, возникают местные полюса N, S и магнитное поле над дефектом.

Если намагничивающее поле снять, местные полюса и магнитное поле над дефектом всё равно останутся.

Наибольший возмущающий эффект и наибольшее местное магнитное поле вызовет дефект, ориентированный перпендикулярно направлению линий магнитного потока. Если через исследуемую конструкцию пропустить ток одновременно постоянный и переменный, это позволит создать переменное направление намагничивания и выявить различно ориентированные дефекты.

Для регистрации местных магнитных полей над дефектами применяют мелкоразмолотый железный сурик, окалину и т.п., выбирая цвет порошка контрастным по отношению к цвету предварительно зачищенной поверхности конструкции; порошок наносят сухим (напыление) или в виде суспензии - водной (что предпочтительнее для строительных конструкций) или керосино-масляной. Вследствие намагничивания и притягивания друг к другу частиц порошка, над дефектами он оседает в виде заметных скоплений.

Для регистрации местных магнитных полей (дефектов) в сварных швах используют магнитографический метод. Намагничивание производят соленоидом, витки которого располагают параллельно шву по обеим его сторонам; на шов накладывается магнитная лента (аналогичная применяемой в звукозаписи, но несколько большей ширины). Местное магнитное поле запишется на ленте. Прослушивают запись на звуковом индикаторе.

Феррозондовый метод основан на преобразовании напряженности магнитного поля в электрический сигнал. Перемещая два зонда по поверхности конструкции после её размагничивания, выискивают местные магнитные поля над дефектами; возникающая в этих местах электродвижущая сила зафиксируется прибором.

Эффект Холла заключается в том, что если прямоугольную пластину из полупроводника (германия, антимонита, арсенида индия) поместить в магнитное поле перпендикулярно вектору напряженности и пропустить по ней ток в направлении от одной грани к другой противоположной, то на двух других гранях возникнет электродвижущая сила, пропорциональная напряженности магнитного поля. Размеры пластины 0,7х0,7 мм, толщина 1 мм. Местные магнитные поля над дефектами выискивают, перемещая прибор по конструкции после её размагничивания.

Индукционный метод. Выискивание местных магнитных полей над дефектами в сварных швахпроизводится с помощью катушки с сердечником, которая питается переменным током и является элементом мостовой схемы. Возникающая над дефектом электродвижущая сила усиливается и преобразуется в звуковой сигнал или подаётся на самопишущий прибор или осциллограф.

Пондеромоторный метод. Через рамку прибора протекает электрический ток, образуя магнитное поле вокруг себя. Прибор устанавливают на железнодорожный рельс, подвергаемый намагничиванию внешним магнитным полем. Магнитные поля взаимодействуют друг с другом, рамка поворачивается и занимает какое-то положение. При перемещении по рельсу и обнаружении потока рассеяния над дефектом, рамка меняет первоначальное положение.

1. Дефектоскопия - это комплекс физических методов, позволяющих осуществить контроль качества материалов, полуфабрикатов, деталей и узлов автомобилей без их разрушения. Методы дефектоскопии позволяют оценить качество каждой отдельной детали и осуществить их сплошной (100 %) контроль.

Задачей дефектоскопии, наряду с обнаружением дефектов типа трещин и другие нарушений сплошности, является контроль размеров отдельных деталей (как правило, при одностороннем доступе), а также обнаружение не герметичности в заданных зонах. Дефектоскопия является одним из методов обеспечения безопасной эксплуатации автомобилей; объём и выбор вида дефектоскопии зависят от условий его эксплуатации.

2. Методы дефектоскопии основаны на использовании проникающих излучений (электромагнитных, акустических, радиоактивных), взаимодействия электрических и магнитных полей с материалами, а также явлений капиллярности, свето- и цветоконтрастности. В зонах расположения дефектов в материале вследствие изменения структурных и физических характеристик материала изменяются условия его взаимодействия с указанными излучениями, физическими полями, а также с веществами, наносимыми на поверхность контролируемой детали или вводимыми в её полость. Регистрируя с помощью соответствующей аппаратуры эти изменения, можно судить о наличии дефектов, представляющих собой нарушение целостности материала или однородности его состава и структуры, определить их координаты и оценить размеры. С достаточно высокой точностью возможно также измерение толщин стенок полых деталей и нанесённых на изделия защитных и другие покрытий.

В современной практике автомобилестроения и автомобильного сервиса нашли применение следующие методы дефектоскопии материалов, полуфабрикатов, деталей и узлов.

Оптические методы - это методы, осуществляемые визуально (для обнаружения поверхностных трещин и других дефектов размерами более 0,1…0,2 мм) или с помощью оптических приборов - эндоскопов (рис. 1), позволяющих обнаруживать аналогичные дефекты размерами более 30…50 мкм на внутренних поверхностях и в труднодоступных зонах. Оптические методы обычно предшествуют другим методам и используются для контроля всех деталей авиационных конструкций на всех стадиях изготовления и эксплуатации.

Рис. 1.

Обследование эндоскопом применяют, например, для поиска трещин с внутренней стороны лонжеронов автомобильных рам.

Радиационные методы, использующие рентгеновское, гамма- и другие (например, электроны) проникающие излучения различных энергий, получаемые с помощью рентгеновских аппаратов, радиоактивных изотопов и других источников, позволяют обнаруживать внутренние дефекты размерами более 1…10 % от толщины просвечиваемого сечения в изделиях толщиной (по стали) до 100 мм (при использовании рентгеновской аппаратуры) и до 500 мм (при использовании быстрых электронов). Радиационные методы используются для контроля литых, сварных и других деталей авиационных конструкций из металлических и неметаллических материалов, а также для контроля дефектов сборки различных узлов (рис. 2).


Рис. 2.

В автомобильной промышленности радиационную дефектоскопию используют для контроля качества гильз и поршней.

Радиоволновые методы основаны на изменении интенсивностей, сдвигов по времени или фазе и других параметров электромагнитных волн сантиметрового и миллиметрового диапазонов при распространении их в изделиях из диэлектрических материалов (резина, пластмассы и другие). На глубине 15…20 мм возможно обнаружение расслоений площадью более 1 см 2 .

В автомобилестроении радиоволновым методом измеряют толщину диэлектрических покрытий

Тепловые методы - это методы, использующие инфракрасное (тепловое) излучение нагретой детали для обнаружения неоднородности её строения (несплошность в многослойных изделиях, в сварных и паяных соединениях). Чувствительность современной аппаратуры (тепловизоров, рис. 3) позволяет зарегистрировать разность температур на поверхности контролируемой детали менее 1 °С.


Рис. 3.

В автомобилестроении тепловые методы используют для контроля качества сварных швов, например, при сварке ресиверов пневматической тормозной системы.

Магнитные методы основаны на анализе магнитных полей рассеяния, возникающих в зонах расположения поверхностных и подповерхностных дефектов в намагниченных деталях из ферромагнитных материалов. В оптимальных условиях, при расположении дефекта перпендикулярно направлению намагничивающего поля, могут быть обнаружены достаточно тонкие дефекты, например, шлифовочные трещины (в стали) глубиной 25 мкм и раскрытием 2 мкм. Магнитными методами можно также измерять с погрешностью, не превышающей 1…10 мкм, толщину защитных (немагнитных) покрытий, нанесённых на деталь из ферромагнитного материала (рис. 4).

В автомобилестроении и автомобильном сервиса магнитную дефектоскопию используют для контроля качества шлифовки ответственных деталей, например, шеек коленчатых валов.

Акустические (ультразвуковые) методы - это методы, использующие упругие волны широкого диапазона частот (0,5…25 МГц), вводимые в контролируемую деталь под различными углами. Распространяясь в материале детали, упругие волны затухают в различной степени, а встречая дефекты, отражаются, преломляются и рассеиваются. Анализируя параметры (интенсивность, направление и другие) прошедших и (или) отражённых волн, можно судить о наличии поверхностных и внутренних дефектов различной ориентировки размерами более 0,5…2 мм 2 . Контроль может быть проведён при одностороннем доступе.


Рис. 4.

Возможно также измерение с погрешностью не более 0,05 мм толщины полых изделий (ограничениями являются значительная кривизна поверхности детали и сильное затухание ультразвуковых волн в материале). Акустическими методами (на низких частотах) могут быть обнаружены расслоения площадью более 20…30 мм 2 в клеёных и паяных конструкциях с металлическим и неметаллическим заполнителем (в том числе с сотовым), в слоистых пластиках, а также в плакированных листах и трубах. Используя так называемый метод акустической эмиссии, можно обнаружить в нагруженных элементах автомобильных агрегатов развивающиеся (то есть наиболее опасные) трещины, выделив их из обнаруженных другими методами менее опасных, неразвивающихся дефектов (рис. 5). Зоны контроля при этом формируются с помощью различного расположения датчиков на конструкции. Проволочные датчики устанавливаются в зоне контроля так, чтобы их направление не совпало с направлением развития усталостной трещины.


Рис. 5.

Вихретоковые (электроиндуктивные) методы основаны на взаимодействии полей вихревых токов, возбуждённых датчиком дефектоскопа в изделии из электропроводящего материала, с полем этого же датчика. Эти методы дефектоскопии позволяют в автомобильной промышленности выявлять нарушения сплошности (трещины протяжённостью более 1…2 мм и глубиной более 0,1…0,2 мм, плёны, неметаллические включения), измерять толщину защитных покрытий на металле, судить о неоднородностях химического состава и структуры материала, о внутренних напряжениях. Аппаратура для контроля вихретоковыми методами высокопроизводительна и позволяет автоматизировать разбраковку.

Электрические методы основаны на использовании главным образом слабых постоянных токов и электростатических полей; они позволяют обнаруживать поверхностные и подповерхностные дефекты в изделиях из металлических и неметаллических материалов и различать некоторые марки сплавов между собой. дефектоскопия технологический изделие производство

Капиллярные методы основаны на явлении капиллярности, то есть, на способности некоторых веществ проникать в мелкие трещины. Обработка такими веществами повышает цвето- и светоконтрастность участка изделия, содержащего поверхностные трещины, относительно окружающей этот участок неповреждённой поверхности. Эти методы позволяют обнаруживать поверхностные трещины раскрытием более 0,01 мм, глубиной от 0,03 мм и протяжённостью от 0,5 мм в деталях из непористых материалов, в том числе, в деталях сложной формы, когда применение другие методов затруднено или исключено (рис. 6).

Рис. 6.

В автомобилестроении капиллярные методы используются для контроля качества сварных швов, например, при изготовлении цистерн. Вышеуказанные методы дефектоскопии по отдельности не являются универсальными, и поэтому наиболее ответственные детали обычно проверяют, используя несколько методов, хотя это и приводит к дополнительным затратам времени. Для повышения надежности результатов контроля и производительности труда внедряют автоматизированные комплексы, в том числе с использованием ЭВМ для управления контролем и обработки информации, получаемой с датчиков дефектоскопов.

ДЕФЕКТОСКОПИЯ (от лат. defectus - недостаток, изъян и греч. skopeo - рассматриваю, наблюдаю) - комплекс физ. методов и средств неразрушающего контроля качества материалов, заготовок и изделий с целью обнаружения дефектов их строения. Методы Д. позволяют полнее оценить качество каждого изделия без его разрушения и осуществить сплошной контроль, что особенно важно для изделий ответств. назначения, для к-рых методы выборочного разрушающего контроля недостаточны.

Несоблюдение заданных технол. параметров при обработке материала сложного хим. и фазового состава, воздействие агрессивных сред и эксплуатац. нагрузок при хранении изделия и в процессе его работы могут привести к возникновению в материале изделия разл. рода дефектов - нарушений сплошности или однородности, отклонений от заданного хим. состава, структуры или размеров, ухудшающих эксплуатационные характеристики изделия. В зависимости от величины дефекта в зоне его расположения изменяются физ. свойства материала - плотность, электропроводность, магнитные, упругие характеристики и др.

Методы Д. основаны на анализе вносимых дефектом искажений в приложенные к контролируемому изделию физ. поля разл. природы и на зависимости результирующих полей от свойств, структуры и геометрии изделия. Информация о результирующем поле позволяет судить о наличии дефекта, его координатах и размере.

Д. включает в себя разработку методов неразрушающего контроля и аппаратуры - дефектоскопов, устройств для проведения контроля, систем для обработки и фиксации полученной информации. Применяются оптич., радиац., магн., акустич., эл--магн. (токовихревые), электрич. и др. методы.

Оптическая Д. основана на непосредств. осмотре поверхности изделия невооружённым глазом (визуально) или с помощью оптич. приборов (лупы, микроскопа). Для осмотра внутр. поверхностей, глубоких полостей и труднодоступных мест применяют спец. эндоскопы - диоптрийные трубки, содержащие световоды из волоконной оптики, оснащённые миниатюрными осветителями, призмами и линзами. Методами оптич. Д. в видимом диапазоне можно обнаруживать только поверхностные дефекты (трещины, плены и др.) в изделиях из материалов, непрозрачных для видимого света, а также поверхностные и внутр. дефекты - в прозрачных. Мин. размер дефекта, обнаруживаемого визуально невооружённым глазом, составляет 0,1-0,2 мм, при использовании оптич. систем - десятки мкм. Для контроля геометрии деталей (напр., профиля резьбы, шероховатости поверхности) применяют проекторы, профилометры и микроинтерферометры. Новой реализацией оптич. метода, позволяющей существенно повысить его разрешающую способность, является лазерная Д., в к-рой используется дифракция когерентного лазерного луча с индикацией при помощи фотоэлектронных приборов. При автоматизации оптич. метода контроля применяют телевиа. передачу изображения.

Радиационная Д. основана на зависимости поглощения проникающего излучения от длины пути, пройденного им в материале изделия, от плотности материала и атомного номера элементов, входящих в его состав. Наличие в изделии нарушений сплошности, инородных включений, изменения плотности и толщины приводит к разл. ослаблению лучей в разл. его сечениях. Регистрируя распределение интенсивности прошедшего излучения, можно получить информацию о внутр. структуре изделия, в т. ч. судить о наличии, конфигурации и координатах дефектов. При этом могут использоваться проникающие излучения разл. жёсткости: рентг. излучение с энергиями 0,01-0,4 МэВ; излучение, полученное в линейном (2-25 МэВ) и циклич. (бетатрон, микротрон 4-45 МэВ) ускорителях или в ампуле с -активными радиоизотопами (0,1-1 МэВ); гамма-излучение с энергиями 0,08-1,2 МэВ; нейтронное излучение с энергиями 0,1-15 МэВ.

Регистрация интенсивности прошедшего излучения осуществляется разл. способами - фотографич. методом с получением изображения просвечиваемого изделия на фотоплёнке (плёночная радиография), на многократно используемой ксерорадиографич. пластинке (электрорадиография); визуально, наблюдая изображения просвечиваемого изделия на флуоресцирующем экране (радиоскопия); с помощью электронно-оптич. преобразователей (рентгенотелевидение); измерением интенсивности излучения спец. индикаторами, действие к-рых основано на ионизации газа излучением (радиометрия).

Чувствительность методов радиац. Д. определяется отношением протяжённости дефекта или зоны, имеющей отличающуюся плотность, в направлении просвечивания к толщине изделия в этом сечении и для разл. материалов составляет от 1 до 10% его толщины. Применение рентг. Д. эффективно для изделий ср. толщин (сталь до ~80 мм, лёгкие сплавы до ~250 мм). Сверхжёсткое излучение с энергией в десятки МэВ (бетатрон) позволяет просвечивать стальные изделия толщиной до ~500 мм. Гамма-Д. характеризуется большей компактностью источника излучения, что позволяет контролировать труднодоступные участки изделий толщиной до ~250 мм (сталь), притом в условиях, когда рентг. Д. затруднена. Нейтронная Д. наиб. эффективна для контроля изделий небольшой толщины из материалов малой плотности. Один из новых способов рентгеноконтроля - вычислит. томография, основанная на обработке радиометрич. информации с помощью ЭВМ, получаемой при многократном просвечивании изделий под разными углами. При этом удаётся послойно визуализировать изображения внутр. структуры изделия. При работе с источниками ионизирующих излучений должна быть обеспечена соответствующая биол. защита.

Радиоволновая Д. основана на изменении параметров эл--магн. волн (амплитуды, фазы, направления вектора поляризации) сантиметрового и миллиметрового диапазона при распространении их в изделиях из диэлектрических материалов (пластмассы, резина, бумага).

Источником излучения (обычно - когерентного, поляризованного) является генератор СВЧ (магнетронный, клистронный) небольшой мощности, питающий волновод или спец. антенну (зонд), передающую излучение в контролируемое изделие. Та же антенна при приёме отражённого излучения или аналогичная, расположенная с противоположной стороны изделия,- при приёме прошедшего излучения подаёт полученный сигнал через усилитель на индикатор. Чувствительность метода позволяет обнаруживать в диэлектриках на глубине до 15-20 мм расслоения площадью от 1 см 2 , измерять влажность бумаги, сыпучих материалов с погрешностью менее 1%, толщину металлич. листа с погрешностью менее 0,1 мм и т. д. Возможны визуализация изображения контролируемой зоны на экране (радиовизор), фиксация его на фотобумаге, а также применение голографич. способов фиксации изображения.

Тепловая (инфракрасная) Д. основана на зависимости темп-ры поверхности тела как в стационарных, так и в нестационарных полях от наличия дефекта и неоднородности структуры тела. При этом используется ИК-излучение в низкотемпературном диапазоне. Распределение темп-р на поверхности контролируемого изделия, возникающее в проходящем, отражённом или собственном излучении, представляет собой ИК-изображение данного участка изделия. Сканируя поверхность приёмником излучения, чувствительным к ИК-лучам (термистором или пироэлектриком), на экране прибора (тепловизора) можно наблюдать светотеневое или цветное изображение целиком, распределение темп-р по сечениям или, наконец, выделить отд. изотермы. Чувствительность тепловизоров позволяет регистрировать на поверхности изделия разность темп-р менее 1 о C. Чувствительность метода зависит от отношения размера d дефекта или неоднородности к глубине l его залегания примерно как (d/l) 2 , а также от теплопроводности материала изделия (обратно пропорциональная зависимость). Применяя тепловой метод, можно контролировать изделия, нагревающиеся (охлаждающиеся) во время работы.

Магнитная Д. может применяться только для изделий из ферромагн. сплавов и реализуется в двух вариантах. Первый основан на анализе параметров магн. полей рассеяния, возникающих в зонах расположения поверхностных и подповерхностных дефектов в намагниченных изделиях, второй - на зависимости магн. свойств материалов от их структуры и хим. состава.

При контроле по первому способу изделие намагничивается с помощью электромагнитов, соленоидов, путём пропускания тока через изделие или стержень, продетый сквозь отверстие в изделии, либо индуцирова-ния тока в изделии. Для намагничивания используются постоянные, переменные и импульсные магн, поля. Оптим. условия контроля создаются при ориентировке дефекта перпендикулярно направлению намагничивающего поля. Для магнитно-твёрдых материалов контроль осуществляется в поле остаточной намагниченности, для магнитно-мягких - в приложенном поле.

Индикатором магн. поля дефекта может служить магн. порошок, напр. магнетит высокой дисперсности (метод магн. порошка), к к-рому иногда добавляются окрашивающие (для контроля изделий с тёмной поверхностью) или флуоресцирующие (для повышения чувствительности) компоненты. Частицы порошка после посыпания или поливки суспензией намагниченного изделия оседают на краях дефектов и наблюдаются визуально. Чувствительность этого метода высока - обнаруживаются трещины глубиной ~25 мкм и раскрытием -2 мкм.

При магнитографич. методе индикатором служит магн. лента, к-рая прижимается к изделию и намагничивается вместе с ним. Выбраковка производится по результатам анализа записи на магн. ленте. Чувствительность метода к поверхностным дефектам такая же, как у порошкового, а к глубинным дефектам выше - на глубине до 20-25 мм обнаруживаются дефекты протяжённостью по глубине 10-15% от толщины.

В качестве индикатора поля дефекта могут использоваться пассивные индукционные преобразователи. Изделие, движущееся с относит. скоростью до 5 м/с и более, после прохождения через намагничивающее устройство проходит через преобразователь, индуцируя в его катушках сигнал, содержащий информацию о параметрах дефекта. Такой способ эффективен для контроля металла в процессе прокатки, а также для контроля железнодорожных рельсов.

Феррозондовый метод индикации использует активные преобразователи - феррозонды ,в к-рых на тонкий пермаллоевый сердечник намотаны катушки: возбуждающая, поле к-рой взаимодействует с полем дефекта, и измерительная, по эдс к-рой судят о напряжённости поля дефекта или о градиенте этого поля. Феррозондовый индикатор позволяет обнаружить в изделиях простой формы, движущихся со скоростью до 3 м/с, на глубине до 10 мм дефекты протяжённостью (по глубине) ~10% от толщины изделия. Для индикации поля дефекта применяются также преобразователи на основе Холла эффекта и магниторезисторные. После проведения контроля методами магнитной Д. изделие должно быть тщательно размагничено.

Вторая группа методов магн. Д. служит для контроля структурного состояния, режимов термич. обработки, механич. свойств материала. Так, коэрцитивная сила углеродистой и низколегиров. стали коррелируется с содержанием углерода и, следовательно, с твёрдостью, магнитная проницаемость - с содержанием ферритной составляющей (ос-фазы), предельное содержание к-рой лимитируется из-за ухудшения механич. и технологич. свойств материала. Спец. приборы (ферритометры, a-фазометры, коэрцитиметры, магн. анализаторы), использующие зависимость между магн. характеристиками и др. свойствами материала, также позволяют практически решать задачи магн. Д.

Методы магн. Д. используются также для измерения толщины защитных покрытий на изделиях из ферромагн. материалов. Приборы для этих целей основаны либо на пондеромоторном действии - в этом случае измеряется сила притяжения (отрыва) пост. магнита или электромагнита от поверхности изделия, к к-рой он прижат, либо на измерении напряжённости магн. поля (с помощью датчиков Холла, феррозондов) в магнитопроводе электромагнита, установленного на этой поверхности. Толщиномеры позволяют производить измерения в широком диапазоне толщин покрытий (до сотен мкм) с погрешностью, не превышающей 1-10 мкм.

Акустическая (ультразвуковая) Д. использует упругие волны (продольные, сдвиговые, поверхностные, нормальные, изгибные) широкого частотного диапазона (гл. обр. УЗ-диапазона), излучаемые в непрерывном или импульсном режиме и вводимые в изделие с помощью пьезоэлектрич. (реже - эл--магнитоакустич.) преобразователя, возбуждаемого генератором эл--магн. колебаний. Распространяясь в материале изделия, упругие волны затухают в разл. степени, а встречая дефекты (нарушения сплошности или однородности материала), отражаются, преломляются и рассеиваются, изменяя при этом свою амплитуду, фазу и др. параметры. Принимают их тем же или отд. преобразователем и после соответствующей обработки сигнал подают на индикатор или записывающее устройство. Существует неск. вариантов акустич. Д., к-рые могут применяться в разл. комбинациях.

Эхо-метод представляет собой УЗ-локацию в твёрдой среде; это наиб. универсальный и распространённый метод. Импульсы УЗ-частоты 0,5-15 МГц вводят в контролируемое изделие и регистрируют интенсивность и время прихода эхо-сигналов, отражённых от поверхностей изделия и от дефектов. Контроль эхо-методом ведётся при одностороннем доступе к изделию путём сканирования его поверхности искателем с заданной скоростью и шагом при оптим. угле ввода УЗ. Метод обладает высокой чувствительностью, к-рая ограничивается структурными шумами. В оптим. условиях могут быть обнаружены дефекты размерами в неск. десятых долей мм. Недостаток эхо-метода - наличие неконтролируемой мёртвой зоны у поверхности, протяжённость к-рой (глубина) определяется гл. обр. длительностью излучаемого импульса и обычно составляет 2-8 мм. Эхо-методом эффективно контролируются слитки, фасонное литьё, металлургич. полуфабрикаты, сварные, клеёные, паяные, заклёпочные соединения и др. элементы конструкций в процессе изготовления, хранения и эксплуатации. Обнаруживаются поверхностные и внутр. дефекты в заготовках и изделиях разл. формы и габаритов из металлов и неметаллич. материалов, зоны нарушения однородности кристаллич. структуры и коррозионного поражения металлич. изделий. Может быть с высокой точностью измерена толщина изделия при одностороннем доступе к нему. Вариант эхо-метода с использованием Лэмба волн , обладающих полноводным характером распространения, позволяет осуществлять контроль листовых полуфабрикатов большой протяжённости с высокой производительностью; ограничением является требование к постоянству толщины контролируемого полуфабриката. Контроль с применением Рэлея волн позволяет выявлять поверхностные и приповерхностные дефекты; ограничением является требование к высокой гладкости поверхности.

Теневой метод предусматривает ввод УЗ с одной стороны изделия, а приём - с противоположной. О наличии дефекта судят по уменьшению амплитуды в зоне звуковой тени, образующейся за дефектом, либо по изменению фазы или времени приёма сигнала, огибающего дефект (временной вариант метода). При одностороннем доступе к изделию используется зеркальный вариант теневого метода, при к-ром индикатором дефекта является уменьшение сигнала, отражённого от дна изделия. По чувствительности теневой метод уступает эхо-методу, однако преимуществом его является отсутствие мёртвой зоны.

Резонансный метод используется гл. обр. для измерения толщины изделия. Возбуждая в локальном объёме стенки изделия УЗ-колебания, модулируют их по частоте в пределах 2-3 октав, по значениям резонансных частот (когда по толщине стенки укладывается целое число полуволн) определяют толщину стенки изделия с погрешностью ок. 1%. При возбуждении колебаний во всём объёме изделия (интегр. вариант метода) можно по изменению резонансной частоты судить также о наличии дефектов или об изменении упругих характеристик материала изделия.

Метод свободных колебаний (интегральный вариант) основан на ударном возбуждении упругих колебаний в контролируемом изделии (напр., бойком НЧ-вибратора) и последующем измерении с помощью пьезоэлемента механич. колебаний, по изменению спектра к-рых судят о наличии дефекта. Метод успешно применяется для контроля качества склейки низкодобротных материалов (текстолит, фанера и др.) между собой и с металлич. обшивкой.

Импедансный метод основан на измерении локального механич. сопротивления (импеданса) контролируемого изделия. Датчик импедансного дефектоскопа, работающий на частоте 1,0-8,0 кГц, будучи прижат к поверхности изделия, реагирует на силу реакции изделия в точке прижима. Метод позволяет определять расслоения площадью от 20-30 мм 2 в клеёных и паяных конструкциях с металлич. и неметаллич. заполнением, в слоистых пластиках, а также в плакированных листах и трубах.

Велосиметрический метод основан на изменении скорости распространения изгибных волн в пластине в зависимости от толщины пластины или от наличия расслоений внутри многослойной клеёной конструкции. Метод реализуется на НЧ (20-70 кГц) и позволяет обнаруживать расслоения площадью 2-15 см 2 (в зависимости от глубины), залегающие на глубине до 25 мм в изделиях из слоистых пластиков.

Акустико-топографич. метод основан на наблюдении мод колебаний, в т. ч. "фигур Хладни", с помощью тонкодиоперсного порошка при возбуждении в контролируемом изделии изгибных колебаний с модулируемой (в пределах 30-200 кГц) частотой. Частицы порошка, смещаясь с участков поверхности, колеблющихся с макс. амплитудой, к участкам, где эта амплитуда минимальна, обрисовывают контуры дефекта. Метод эффективен для контроля изделий типа многослойных листов и панелей и позволяет обнаруживать дефекты протяжённостью от 1 - 1,5 мм.

Метод акустич. эмиссии (относящийся к пассивным методам) основан на анализе сигналов, характеризующих волны напряжения, излучаемые при возникновении и развитии трещин в изделии в процессе его механич. или теплового нагружения. Сигналы принимаются пьезоэлектрич. искателями, расположенными на поверхности изделий. Амплитуда, интенсивность и др. параметры сигналов содержат информацию о зарождении и развитии усталостных трещин, коррозии под напряжением и фазовых превращениях в материале элементов конструкций разл. типов, сварных швах, сосудах высокого давления и т. д. Метод акустич. эмиссии позволяет обнаруживать развивающиеся, т. е. наиб. опасные, дефекты и отделить их от обнаруженных др. методами дефектов, неразвивающихся, менее опасных для дальнейшей эксплуатации изделия. Чувствительность этого метода при использовании спец. мер защиты приёмного устройства от воздействия внешних шумовых помех достаточно высока и позволяет обнаруживать трещины на нач. стадии их развития, задолго до исчерпания ресурса изделия.

Перспективными направлениями развития акустич. методов контроля являются звуковидение, в т. ч. акустич. голография, акустич. томография.

Вихретоковая (электроиндуктивная) Д. основана на регистрации изменений электрич. параметров датчика вихретокового дефектоскопа (полного сопротивления его катушки или эдс), вызванных взаимодействием поля вихревых токов, возбуждённых этим датчиком в изделии из электропроводящего материала, с полем самого датчика. Результирующее поле содержит информацию об изменении электропроводности и магн. проницаемости из-за наличия в металле структурных неоднородностей или нарушений сплошности, а также о форме и размерах (толщине) изделия или покрытия.

Датчики вихретоковых дефектоскопов выполняются в виде катушек индуктивности, помещаемых внутрь контролируемого изделия или окружающих его (проходной датчик) либо накладываемых на изделие (накладной датчик). В датчиках экранного типа (проходных и накладных) контролируемое изделие располагается между катушками. Вихретоковая Д. не требует механич. контакта датчика с изделием, что позволяет проводить контроль на высоких скоростях их относит. перемещения (до 50 м/с). Вихретоковые дефектоскопы разделяются на след. осн. группы: 1) приборы для обнаружения нарушений сплошности с проходными или накладными датчиками, работающими в широком частотном диапазоне - от 200 Гц до десятков МГц (повышение частоты увеличивает чувствительность к протяжённости трещин, поскольку можно применять малогабаритные датчики). Это позволяет выявлять трещины, плены неметаллич. включений и др. дефекты протяжённостью 1-2 мм при глубине их залегания 0,1-0,2 мм (накладным датчиком) или протяжённостью 1 мм при глубине 1-5% от диаметра изделия (проходным датчиком). 2) Приборы для контроля размеров - толщиномеры, с помощью к-рых измеряют толщину разл. покрытий, нанесённых на основание из разл. материалов. Определение толщины неэлектропроводящих покрытий на электропроводящих основаниях, представляющее собой по существу измерение зазора, производится на частотах до 10 МГц с погрешностью в пределах 1-15% от измеряемой величины.

Для определения толщины электропроводящих гальванич. или плакиров. покрытий на электропроводящем основании используются вихретоковые толщиномеры, в к-рых реализуются спец. схемы подавления влияния изменения уд. электропроводности материала основания и изменения величины зазора.

Вихретоковые толщиномеры применяются для измерения толщины стенки труб, баллонов из неферромагн. материалов, а также листов и фольг. Диапазон измерений 0,03-10 мм, погрешность 0,6-2%.

3) Вихретоковые структуромеры позволяют, анализируя значения уд. электропроводности и магн. проницаемости, а также параметры высших гармоник напряжения, судить о хим. составе, структурном состоянии материала, величине внутр. напряжений, сортировать изделия по маркам материала, качеству термич. обработки и т. д. Можно выявлять зоны структурной неоднородности, зоны усталости, оценивать глубину обезуглероженных слоев, слоев термич. и хим--термич. обработки и т. д. Для этого в зависимости от конкретного назначения прибора используются либо НЧ-поля большой напряжённости, либо ВЧ-поля малой напряжённости, либо двух- и многочастотные поля В структуромерах для увеличения объёма информации, снимаемой с датчика, как правило, используются многочастотные поля и осуществляется спектральный анализ сигнала. Приборы для контроля ферромагн. материалов работают в НЧ-диапазоне (50 Гц-10 кГц), для контроля неферромагнитных - в ВЧ-диапазоне (10 кГц-10 мГц), что обусловлено зависимостью скин-эффекта от значения магн. проницаемости.

Электрическая Д. основана на использовании слабых пост. токов и эл--статич. полей и осуществляется эл--контактным, термоэлектрич., трибоэлектрич. и эл--статич. методами. Эл--контактный метод позволяет обнаружить поверхностные и подповерхностные дефекты по изменению электросопротивления на участке поверхности изделия в зоне расположения этого дефекта. С помощью спец. контактов, расположенных на расстоянии 10-12 мм один от другого и плотно прижатых к поверхности изделия, подводится ток, а на др. паре контактов, расположенных на линии тока, замеряется напряжение, пропорциональное сопротивлению на участке между ними. По изменению сопротивления судят о нарушении однородности строения материала или о наличии трещины. Погрешность измерения составляет 5-10%, что обусловлено нестабильностью сопротивления токовых и измерит. контактов.

Термоэлектрич. метод основан на измерении термоэлектродвижущей силы (ТЭДС), возникающей в замкнутой цепи при нагреве места контакта двух разнородных металлов. Если один из этих металлов принять за эталон, то при заданной разности темп-р горячего и холодного контактов величина и знак ТЭДС будут определяться свойствами второго металла. Этим методом можно определить марку металла, из к-рого изготовлены заготовка или элемент конструкции, если число возможных вариантов невелико (2-3 марки).

Трибоэлектрич. метод основан на измерении трибоЭДС, возникающей при трении разнородных металлов друг о друга. Измеряя разность потенциалов между эталонным и испытуемым металлами, можно различить марки нек-рых сплавов. Изменение хим. состава сплава в пределах, допустимых по техн. условиям, приводит к разбросу показаний термо- и трибоэлектрич. приборов. Поэтому оба этих метода могут быть применены лишь в случаях резкого различия свойств сортируемых сплавов.

Э л.- стати ч. метод основан на использовании пондеромоторных сил эл--статич. поля, в к-рое помещают изделие. Для обнаружения поверхностных трещин в покрытии металлич. изделия его опыляют тонким порошком мела из пульверизатора с эбонитовым наконечником. Частицы мела при трении об эбонит заряжаются положительно за счёт трибоэлектрич. эффекта и оседают на краях трещин, поскольку вблизи последних неоднородность эл--статич. поля выражена наиб. заметно. Если изделие изготовлено из неэлектропроводящих материалов, то оно предварительно смачивается ионогенным пенетрантом и после удаления избытка его с поверхности изделия припудривается заряж. частицами мела, к-рые притягиваются жидкостью, заполняющей полость трещины. В этом случае возможно обнаружение трещин, не выходящих на поверхность, подвергающуюся осмотру.

Капиллярная Д. основана на искусств. повышении цвето- и светоконтрастности участка изделия, содержащего поверхностные трещины, относительно окружающей поверхности. Осуществляется гл. обр. люминесцентным и цветным методами, позволяющими обнаружить трещины, выявление к-рых невооружённым глазом невозможно из-за малых размеров, а использование оптич. приборов неэффективно из-за недостаточной контрастности изображения и малого поля зрения при требуемых увеличениях.

Для обнаружения трещины полость её заполняется пенетрантом - индикаторной жидкостью на основе люминофоров или красителей, проникающим в полость под действием капиллярных сил. После этого поверхность изделия очищается от излишков пенетранта, а из полости трещины индикаторная жидкость извлекается с помощью проявителя (сорбента) в виде порошка или суспензии и изделие осматривается в затемнённом помещении в УФ-свете (люминесцентный метод). Люминесценция индикаторного раствора, поглощённого сорбентом, даёт чёткую картину расположения трещин с мин. раскрытием 0,01 мм, глубиной 0,03 мм и протяжённостью 0,5 мм. При цветном методе не требуется затемнения. Пенетрант, содержащий добавку красителя (обычно ярко-красного), после заполнения полости трещины и очистки поверхности от его излишка диффундирует в белый проявляющий лак, нанесённый тонким слоем на поверхность изделия, чётко обрисовывая трещины. Чувствительность обоих методов примерно одинакова.

Преимущество капиллярной Д.- её универсальность и однотипность технологии для деталей разл. формы, размеров и материалов; недостаток - применение материалов, обладающих высокой токсичностью, взрыво- и пожароопасностью, что предъявляет особые требования к технике безопасности.

Значение Д. Методы Д. применяются в разл. областях народного хозяйства, способствуя совершенствованию технологии изготовления изделий, повышению их качества, продлению срока службы и предотвращению аварий. Нек-рые методы (гл. обр. акустические) позволяют при периодич. контроле изделий в процессе их эксплуатации оценивать повреждаемость материала, что особенно важно для прогнозирования остаточного ресурса изделий ответственного назначения. В связи с этим непрерывно повышаются требования, предъявляемые к достоверности информации, получаемой при использовании методов Д., а также к производительности контроля. T. к. метрологич. характеристики дефектоскопов невысоки и на их показания влияет множество случайных факторов, оценка результатов контроля может быть только вероятностной. Наряду с разработкой новых методов Д., осн. направление совершенствования существующих - автоматизация контроля, применение многопараметровых методов, использование ЭВМ для обработки получаемой информации, улучшение метрологич. характеристик аппаратуры в целях повышения достоверности и производительности контроля, использование методов визуализации внутр. структуры и дефектов изделия.

Лит.: Шрайбер Д. С., Ультразвуковая дефектоскопия, M., 1965; Неразрушающие испытания. (Справочник), под ред. Д. Мак-Мастера, пер. с англ., кн. 1-2, M.- Л., 1965; Фалькевич А. С., Xусанов M. X., Магнитографический контроль сварных соединений, M., 1966; Дорофеев А. Л., Электроиндуктивная (индукционная) дефектоскопия, M., 1967; Румянцев С. В., Радиационная дефектоскопия, 2 изд., M., 1974; Приборы для неразрушающего контроля материалов и изделий, под ред. В. В. Клюева, [т. 1-2], M., 1976; Неразрушающий контроль металлов и изделий, под ред. Г. С. Самойловича, M., 1976. Д. С. Шрайбер .

Дефектоскопия I Дефектоскопи́я (от лат. defectus - недостаток и...скопия)

комплекс методов и средств неразрушающего контроля материалов и изделий с целью обнаружения дефектов. Д. включает: разработку методов и аппаратуру (дефектоскопы и др.); составление методик контроля; обработку показаний дефектоскопов.

Вследствие несовершенства технологии изготовления или в результате эксплуатации в тяжёлых условиях в изделиях появляются различные дефекты - нарушения сплошности или однородности материала, отклонения от заданного химического состава или структуры, а также от заданных размеров. Дефекты изменяют физические свойства материала (плотность, электропроводность, магнитные, упругие свойства и др.). В основе существующих методов Д. лежит исследование физических свойств материалов при воздействии на них рентгеновских, инфракрасных, ультрафиолетовых и гамма-лучей, радиоволн, ультразвуковых колебаний, магнитного и электростатического полей и др.

Наиболее простым методом Д. является визуальный - невооружённым глазом или с помощью оптических приборов (например, лупы). Для осмотра внутренних поверхностей, глубоких полостей и труднодоступных мест применяют специальные трубки с призмами и миниатюрными осветителями (диоптрийные трубки) и телевизионные трубки. Используют также Лазер ы для контроля, например качества поверхности тонкой проволоки и др. Визуальная Д. позволяет обнаруживать только поверхностные дефекты (трещины, плёны и др.) в металлических изделиях и внутренние дефекты в изделиях из стекла или прозрачных для видимого света пластмасс. Минимальный размер дефектов, обнаруживаемых невооружённым глазом, составляет 0,1-0,2 мм , а при использовании оптических систем - десятки мкм .

Рентгенодефектоскопия основана на поглощении рентгеновских лучей (См. Рентгеновские лучи), которое зависит от плотности среды и атомного номера элементов, образующих материал среды. Наличие таких дефектов, как трещины, раковины или включения инородного материала, приводит к тому, что проходящие через материал лучи (рис. 1 ) ослабляются в различной степени. Регистрируя распределение интенсивности проходящих лучей, можно определить наличие и расположение различных неоднородностей материала.

Интенсивность лучей регистрируют несколькими методами. Фотографическими методами получают снимок детали на плёнке. Визуальный метод основан на наблюдении изображения детали на флуоресцирующем экране. Более эффективен этот метод при использовании электронно-оптических преобразователей (См. Электроннооптический преобразователь). При ксерографическом методе получают изображения на металлических пластинках, покрытых слоем вещества, поверхности которого сообщён электростатический заряд. На пластинах, которые могут быть использованы многократно, получают контрастные снимки. Ионизационный метод основан на измерении интенсивности электромагнитного излучения по его ионизирующему действию, например на газ. В этом случае индикатор можно устанавливать на достаточном расстоянии от изделия, что позволяет контролировать изделия, нагретые до высокой температуры.

Чувствительность методов рентгенодефектоскопии определяется отношением протяжённости дефекта в направлении просвечивания к толщине детали в этом сечении и для различных материалов составляет 1-10%. Применение рентгенодефектоскопии эффективно для деталей сравнительно небольшой толщины, т.к. проникающая способность рентгеновских лучей с увеличением их энергии возрастает незначительно. Рентгенодефектоскопию применяют для определения раковин, грубых трещин, ликвационных включений в литых и сварных стальных изделиях толщиной до 80 мм и в изделиях из лёгких сплавов толщиной до 250 мм . Для этого используют промышленные рентгеновские установки с энергией излучения от 5-10 до 200-400 кэв (1 эв = 1,60210 · 10 -19 дж ). Изделия большой толщины (до 500 мм ) просвечивают сверхжёстким электромагнитным излучением с энергией в десятки Мэв , получаемым в Бетатрон е.

Гамма-дефектоскопия имеет те же физические основы, что и рентгенодефектоскопия, но используется излучение гамма-лучей, испускаемых искусственными радиоактивными изотопами различных металлов (кобальта, иридия, европия и др.). Используют энергию излучения от нескольких десятков кэв до 1-2 Мэв для просвечивания деталей большой толщины (рис. 2 ). Этот метод имеет существенные преимущества перед рентгенодефектоскопией: аппаратура для гамма-дефектоскопии сравнительно проста, источник излучения компактный, что позволяет обследовать труднодоступные участки изделий. Кроме того, этим методом можно пользоваться, когда применение рентгенодефектоскопии затруднено (например, в полевых условиях). При работе с источниками рентгеновского и гамма-излучений должна быть обеспечена биологическая защита.

Радиодефектоскопия основана на проникающих свойствах радиоволн (См. Радиоволны) сантиметрового и миллиметрового диапазонов (микрорадиоволн), позволяет обнаруживать дефекты главным образом на поверхности изделий обычно из неметаллических материалов. Радиодефектоскопия металлических изделий из-за малой проникающей способности микрорадиоволн ограничена (см. Скин-эффект). Этим методом определяют дефекты в стальных листах, прутках, проволоке в процессе их изготовления, а также измеряют их толщину или диаметр, толщину диэлектрических покрытий и т.д. От генератора, работающего в непрерывном или импульсном режиме, микрорадиоволны через рупорные антенны (См. Рупорная антенна) проникают в изделие и, пройдя усилитель принятых сигналов, регистрируются приёмным устройством.

Инфракрасная Д. использует инфракрасные (тепловые) лучи (см. Инфракрасное излучение) для обнаружения непрозрачных для видимого света включений. Так называемое инфракрасное изображение дефекта получают в проходящем, отражённом или собственном излучении исследуемого изделия. Этим методом контролируют изделия, нагревающиеся в процессе работы. Дефектные участки в изделии изменяют тепловой поток. Поток инфракрасного излучения пропускают через изделие и регистрируют его распределение теплочувствительным приёмником. Неоднородность строения материалов можно исследовать также методом ультрафиолетовой Д.

Магнитная Д. основана на исследовании искажений магнитного поля (См. Магнитное поле), возникающих в местах дефектов в изделиях из ферромагнитных материалов. Индикатором может служить магнитный порошок (закись-окись железа) или его суспензия в масле с дисперсностью частиц 5-10 мкм . При намагничивании изделия порошок оседает в местах расположения дефектов (метод магнитного порошка). Поле рассеяния можно фиксировать на магнитной ленте, которую накладывают на исследуемый участок намагниченного изделия (магнитографический метод). Используют также малогабаритные датчики (феррозонды), которые при движении по изделию в месте дефекта указывают на изменения импульса тока, регистрирующиеся на экране осциллоскопа (феррозондовый метод).

Чувствительность метода магнитной Д. зависит от магнитных характеристик материалов, применяемых индикаторов, режимов намагничивания изделий и др. Методом магнитного порошка можно обнаруживать трещины и др. дефекты на глубине до 2 мм (рис. 3 ), магнитографическим методом контролируют главным образом сварные швы трубопроводов толщиной до 10-12 мм и обнаруживают тонкие трещины и непровар. Феррозондовый метод наиболее целесообразен для обнаружения дефектов на глубине до 10 мм и в отдельных случаях до 20 мм в изделиях правильной формы. Этот метод позволяет полностью автоматизировать контроль и разбраковку. Намагничивание изделий производится магнитными дефектоскопами (рис. 4 ), создающими магнитные поля достаточной напряжённости. После проведения контроля изделия тщательно размагничивают.

Методы магнитной Д. применяют для исследования структуры материалов (магнитная структурометрия) и измерения толщины (магнитная толщинометрия). Магнитная структурометрия основана на определении основных магнитных характеристик материала (коэрцитивной силы, индукции, остаточной намагниченности, магнитной проницаемости). Эти характеристики, как правило, зависят от структурного состояния сплава, подвергаемого различной термической обработке. Магнитную структурометрию применяют для определения структурных составляющих сплава, находящихся в нём в небольшом количестве и по своим магнитным характеристикам значительно отличающихся от основы сплава, для измерения глубины цементации, поверхностной закалки и т.п. Магнитная толщинометрия основана на измерении силы притяжения постоянного магнита или электромагнита к поверхности изделия из ферромагнитного материала, на которую нанесён слой немагнитного покрытия, и позволяет определять толщину покрытия.

Электроиндуктивная (токовихревая) Д. основана на возбуждении вихревых токов переменным магнитным полем датчика дефектоскопа. Вихревые токи создают своё поле, противоположное по знаку возбуждающему. В результате взаимодействия этих полей изменяется полное сопротивление катушки датчика, что и отмечает индикатор. Показания индикатора зависят от электропроводности и магнитной проницаемости металла, размеров изделия, а также изменений электропроводности из-за структурных неоднородностей или нарушений сплошности металла.

Датчики токовихревых дефектоскопов выполняют в виде катушек индуктивности, внутри которых помещают изделие (проходные датчики), или которые накладывают на изделие (накладные датчики). Применение токовихревой Д. позволяет автоматизировать контроль качества проволоки, прутков, труб, профилей, движущихся в процессе их изготовления со значительными скоростями, вести непрерывное измерение размеров. Токовихревыми дефектоскопами можно контролировать качество термической обработки, оценивать загрязнённость высокоэлектропроводных металлов (меди, алюминия), определять глубину слоёв химико-термической обработки с точностью до 3%, рассортировывать некоторые материалы по маркам, измерять электропроводность неферромагнитных материалов с точностью до 1%, обнаруживать поверхностные трещины глубиной в несколько мкм при протяжённости их в несколько десятых долей мм .

Термоэлектрическая Д. основана на измерении электродвижущей силы (См. Электродвижущая сила) (термоэдс), возникающей в замкнутой цепи при нагреве места контакта двух разнородных материалов. Если один из этих материалов принять за эталон, то при заданной разности температур горячего и холодного контактов величина и знак термоэдс будут определяться химическим составом второго материала. Этот метод обычно применяют в тех случаях, когда требуется определить марку материала, из которого состоит полуфабрикат или элемент конструкции (в том числе и в готовой конструкции).

Трибоэлектрическая Д. основана на измерении электродвижущей силы, возникающей при трении разнородных материалов (см. Трибометрия). Измеряя разность потенциалов между эталонными и испытуемыми материалами, можно различить марки некоторых сплавов.

Электростатическая Д. основана на использовании электростатического поля (См. Электростатическое поле), в которое помещают изделие. Для обнаружения поверхностных трещин в изделиях из неэлектропроводных материалов (фарфора, стекла, пластмасс), а также из металлов, покрытых теми же материалами, изделие опыляют тонким порошком мела из пульверизатора с эбонитовым наконечником (порошковый метод). При этом частицы мела получают положительный заряд. В результате неоднородности электростатического поля частицы мела скапливаются у краёв трещин. Этот метод применяют также для контроля изделий из изоляционных материалов. Перед опылением их необходимо смочить ионогенной жидкостью.

Ультразвуковая Д. основана на использовании упругих колебаний (см. Упругие волны), главным образом ультразвукового диапазона частот. Нарушения сплошности или однородности среды влияют на распространение упругих волн в изделии или на режим колебаний изделия. Основные методы: эхометод, теневой, резонансный, велосимметрический (собственно ультразвуковые методы), импедансный и метод свободных колебаний (акустические методы).

Наиболее универсальный эхометод основан на посылке в изделие коротких импульсов ультразвуковых колебаний (рис. 5 ) и регистрации интенсивности и времени прихода эхосигналов, отражённых от дефектов. Для контроля изделия датчик эходефектоскопа сканирует его поверхность. Метод позволяет обнаруживать поверхностные и глубинные дефекты с различной ориентировкой. Созданы промышленные установки (рис. 6 ) для контроля различных изделий. Эхосигналы можно наблюдать на экране осциллоскопа или регистрировать самозаписывающим прибором. В последнем случае повышаются надёжность, объективность оценки, производительность и воспроизводимость контроля. Чувствительность эхометода весьма высока: в оптимальных условиях контроля на частоте 2-4 Мгц можно обнаруживать дефекты, отражающая поверхность которых имеет площадь около 1 мм 2 .

При теневом методе ультразвуковые колебания, встретив на своём пути дефект, отражаются в обратном направлении. О наличии дефекта судят по уменьшению энергии ультразвуковых колебаний или по изменению фазы ультразвуковых колебаний, огибающих дефект. Метод широко применяют для контроля сварных швов, рельсов и др.

Резонансный метод основан на определении собственных резонансных частот упругих колебаний (частотой 1-10 Мгц ) при возбуждении их в изделии. Этим методом измеряют толщину стенок металлических и некоторых неметаллических изделий. При возможности измерения с одной стороны точность измерения около 1%. Кроме того, этим методом можно выявлять зоны коррозионного поражения. Резонансными дефектоскопами осуществляют контроль ручным способом и автоматизированным с записью показаний прибора.

Велосиметрический метод эходефектоскопии основан на измерении изменения скорости распространения упругих волн в зоне расположения дефектов в многослойных конструкциях, используется для обнаружения зон нарушения сцепления между слоями металла.

Импедансный метод основан на измерении механического сопротивления (импеданса) изделия датчиком, сканирующим поверхность и возбуждающим в изделии упругие колебания звуковой частоты. Этим методом можно выявлять дефекты в клеевых, паяных и др. соединениях, между тонкой обшивкой и элементами жёсткости или заполнителями в многослойных конструкциях. Обнаруживаемые дефекты площадью от 15 мм 2 и более отмечаются сигнализатором и могут записываться автоматически.

Метод свободных колебаний (см. Собственные колебания) основан на анализе спектра свободных колебаний контролируемого изделия, возбуждённого ударом; применяется для обнаружения зон нарушения соединений между элементами в многослойных клеёных конструкциях значительной толщины из металлических и неметаллических материалов.

Ультразвуковая Д., использующая несколько переменных параметров (частотный диапазон, типы волн, режимы излучения, способы осуществления контакта и др.), является одним из наиболее универсальных методов неразрушающего контроля.

Капиллярная Д. основана на искусственном повышении свето- и цветоконтрастности дефектного участка относительно неповреждённого. Методы капиллярной Д. позволяют обнаруживать невооружённым глазом тонкие поверхностные трещины и др. несплошности материала, образующиеся при изготовлении и эксплуатации деталей машин. Полости поверхностных трещин заполняют специальными индикаторными веществами (пенетрантами), проникающими в них под действием сил капиллярности. Для так называемого люминесцентного метода пенетранты составляют на основе люминофоров (керосин, нориол и др.). На очищенную от избытка пенетранта поверхность наносят тонкий порошок белого проявителя (окись магния, тальк и т.п.), обладающего сорбционными свойствами, за счёт чего частицы пенетранта извлекаются из полости трещины на поверхность, обрисовывают контуры трещины и ярко светятся в ультрафиолетовых лучах. При так называемом цветном методе контроля пенетранты составляют на основе керосина с добавлением бензола, скипидара и специальных красителей (например, красной краски). Для контроля изделий с тёмной поверхностью применяют магнитный порошок, окрашенный люминофорами (магнитнолюминесцентный метод), что облегчает наблюдение тонких трещин.

Чувствительность капиллярной Д. позволяет обнаруживать поверхностные трещины с раскрытием менее 0,02 мм . Однако широкое применение этих методов ограничено из-за высокой токсичности пенетрантов и проявителей.

Д. - равноправное и неотъемлемое звено технологических процессов, позволяющее повысить надёжность выпускаемой продукции. Однако методы Д. не являются абсолютными, т.к. на результаты контроля влияет множество случайных факторов. Об отсутствии дефектов в изделии можно говорить только с той или иной степенью вероятности. Надёжности контроля способствует его автоматизация, совершенствование методик, а также рациональное сочетание нескольких методов. Годность изделий определяется на основании норм браковки, разрабатываемых при их конструировании и составлении технологии изготовления. Нормы браковки различны для разных типов изделий, для однотипных изделий, работающих в различных условиях, и даже для различных зон одного изделия, если они подвергаются различному механическому, термическому или химическому воздействию.

Применение Д. в процессе производства и эксплуатации изделий даёт большой экономический эффект за счёт сокращения времени, затрачиваемого на обработку заготовок с внутренними дефектами, экономии металла и др. Кроме того, Д. играет значительную роль в предотвращении разрушений конструкций, способствуя увеличению их надёжности и долговечности.

Лит .: Трапезников А. К., Рентгенодефектоскопия, М., 1948; Жигадло А. В., Контроль деталей методом магнитного порошка, М., 1951; Таточенко Л. К., Медведев С. В., Промышленная гамма-дефектоскопия, М., 1955; Дефектоскопия металлов. Сб. ст., под ред. Д. С. Шрайбера, М., 1959; Современные методы контроля материалов без разрушения, под ред. С. Т. Назарова, М., 1961; Кифер И. И., Испытания ферромагнитных материалов, 2 изд., М. - Л., 1962; Гурвич А. К., Ультразвуковая дефектоскопия сварных соединений, К., 1963; Шрайбер Д. С., Ультразвуковая дефектоскопия, М., 1965; Неразрушающие испытания. Справочник, под ред. Р. Мак-Мастера, пер. с англ., кн. 1-2, М. - Л., 1965; Дорофеев А. Л., Электроиндуктивная (индукционная) дефектоскопия, М., 1967.

Д. С. Шрайбер .

Рис. 2. Снимок в гамма-излучении (слева) и фотография разреза прибыли (справа) слитка массой около 500 кг ; видна усадочная раковина.

II Дефектоскопи́я («Дефектоскопи́я»,)

научно-технический журнал, издаётся АН СССР в Свердловске с 1965. Создан на базе института физики металлов. Выходит 6 раз в год. «Д.» публикует оригинальные статьи об изысканиях в области теории и техники неразрушающего контроля качества материалов и изделий, о результатах лабораторных и промышленных испытаний дефектоскопов. Освещает опыт применения контрольной аппаратуры на заводах, опыт контроля строительных конструкций и материалов и др. Тираж (1972) 3,5 тыс. экземпляров. Переиздаётся на английском языке в Нью-Йорке (США).


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Дефектоскопия" в других словарях:

    Дефектоскопия … Орфографический словарь-справочник - (от дефект и...скопия) обобщающее название неразрушающих методов контроля материалов (изделий); используется для обнаружения нарушений сплошности или однородности макроструктуры, отклонений химического состава и других целей. Наиболее… … Большой Энциклопедический словарь

    Дефектоскопия - – метод получения информации о внутреннем состоянии диагностируемого оборудования для выявления дефектов без разрушения изделия на основе методов неразрушающего контроля. Примечание. К методам неразрушающего контроля относятся магнитный,… … Энциклопедия терминов, определений и пояснений строительных материалов

    Дефектоскопия - (от дефект и...скопия), обобщенное название методов неразрушающего контроля, используемых для обнаружения нарушений структуры, химического состава и других дефектов в изделиях и материалах. Основные методы: рентгено, гамма дефектоскопия,… … Иллюстрированный энциклопедический словарь

    Сущ., кол во синонимов: 3 гамма дефектоскопия (1) радиодефектоскопия (1) … Словарь синонимов

    дефектоскопия - Метод получения информации о внутреннем состоянии диагностируемого оборудования для выявления дефектов без разрушения изделия на основе методов неразрушающего контроля. Примечание К методам неразрушающего контроля относятся магнитный,… … Справочник технического переводчика

    - (от лат. defectus недостаток и греч. skopeo рассматриваю, наблюдаю * a. flaw detection; н. Defektoskopie, zerstorungsfreie Werkstoffprufung; ф. defectoscopie, detection des defauts; и. defectoscopia, deteccion de defectos) контроль… … Геологическая энциклопедия, Е. С. Лев, Н. К. Лопырев. Ленинград, 1957 год. Речной транспорт. Издательский переплет. Сохранность хорошая. В книге рассматриваются физические методы контроля материалов и изделий без их разрушения, применительно к… , А. П. Марков. В монографии обобщены результаты исследований и разработок лабораторных и промышленных визуаскопов, автоматизированных средств дистанционной дефектоскопии сложноконтурных протяженных изделий… электронная книга