Учёт тепловой энергии для «Чайников». Что такое тепловая энергия


Различные строительные технологии и материалы имеют свои преимущества и недостатки. Так, например, дом, построенный из классического кирпича у многих ассоциируется с надежностью. Но что, если мы будем рассматривать его с точки зрения энергоэффективности? В данном случае кирпич не будет занимать лидирующие позиции.

Для того, чтобы решить проблему теплоэффективности зданий начали применять различного вида и качества утеплители. Начиная от теплоизоляционной пены, которую можно просто нанести на определенные участки стены уже существующего дома, заканчивая полноценными энергоэффективными стеновыми модулями. Очевидно, что попытки утеплить уже существующий дом принесут некоторые результаты, но будут не достаточно эффективны, в том числе и с финансовой точки зрения. Поэтому появились дешевые решения в виде панелей, изначально снабженных утеплителем. Это либо сэндвич-панели, представляющие собой вспененный утеплитель (пенопласт), вклеенный между плитами ЦСП, либо волокнистый утеплитель (например, минвата), вложенный в каркас деревянной стены.


Совсем недавно идея использования стеновой панели была доработана. В результате чего, энергоэффективные дома начали возводиться из полноценных герметичных стеновых модулей . Утеплитель с рекордно низким показателем теплопроводности выращивается внутри модулей непосредственно в заводских условиях.


Преимуществом использования стеновых модулей как составляющей единицы энергоэффективного здания, является их способность наилучшим образом блокировать передачу тепловой энергии от внешней к внутренней поверхности, и наоборот. Для того чтобы научиться различать строительные материалы по их теплофизическим свойствам, а так же понять, почему энергоэффективные стеновые модули лучше сэндвич-панелей справляются со своей задачей, разберем все возможные механизмы распространения тепла.

Тепловая энергия может передаваться посредством только трех механизмов: конвекции, теплопроводности и теплового излучения.

Тепловая конвекция возникает, когда горячие молекулы перемещаются из одного места в другое. Тенденция горячего воздуха подниматься вверх является двигателем естественной тепловой конвекции. Теплопроводность – это передача тепловой энергии от одной молекулы к другой. Каждая молекула может не менять своего положения в пространстве, но энергия, тем не менее будет передаваться. Горячая (обладающая большей энергией) молекула может передать часть своей энергии соседней молекуле, если последняя менее нагреты (обладает меньшей энергией). Грубо говоря, чем плотнее материал, тем больше молекул находятся в контакте друг с другом, а значит и больше возможностей для теплопроводности. Тепловое излучение (или энергия излучения) является формой электромагнитного излучения, тесно связанным с видимым светом. Инфракрасное электромагнитное излучение, но оно распространяется точно также, как распространяется видимый свет: через вакуум, через атмосферу, через воду и через некоторые твердые вещества, в том числе те, которые являются непрозрачными для видимого света. Таким образом Солнце назревает Землю через 150 млн километров вакуума, где нет ни процесса конфекции, ни теплопроводности. При температуре выше абсолютного нуля (-273 С) любая материя излучает некоторую энергию. Эти три механизма зачастую работают вместе. Например, воздух в печи нагревается за счет теплопроводности и излучения, распространяется по зданию за счет конвекции и нагревает более холодные объекты за счет теплопроводности и теплового излучения.


Теперь давайте рассмотрим стеновые панели и модули.

Внутри стеновых модулей и панелей находится утеплитель, который по своей природе представляет собой вспененное светлое вещество. Отсюда следуют два вывода. “Вспененный” – значит, мало молекул в контакте – низкая теплопроводность , “светлое” – значит, является хорошим отражателем для теплового излучения . За счет отражения энергия излучения не накапливается, не хранится и не передается. Но панель “сэндвич” по своей конструкции не является герметичной, за счет чего происходит просачивание воды и воздуха через панель, а значит не происходит блокировки процесса конвекции . Таким образом, за счет конвекции происходит рассеивание тепла. А вот через полностью герметичный стеновый модуль вода и воздух пройти не могут, почему и снижается возможность конвекции . Чем герметичнее модуль, тем меньше значимость вышеперечисленных процессов.

Это означает, что Солнечное тепло остается снаружи здания, когда летом вы пытаетесь охладить помещение. Зимой же все накопленное в доме тепло остается внутри, а не выходит наружу.

Что такое тепловая энергия?

Энергия - способность тела совершать работу. Выделяют следующие ее виды: электрическую, механическую, гравитационную, ядерную, химическую, электромагнитную, тепловую и другие.

Первая - энергия электронов, движущихся по цепи. Зачастую она используется для получения механической при помощи электродвигателей.

Вторая проявляется при движении, взаимодействии отдельных частиц и тел. деформации при растяжении, сгибании, закручивании и сжатии упругих тел.

Химическая энергия возникает в результате между веществами. Она может выделяться в виде тепловой (к примеру, при горении), а также преобразовываться в электрическую (в аккумуляторах и

Электромагнитная проявляется в результате движения магнитного и электрического полей в виде инфракрасных и радиоволн и т.п. Ядерная содержится в радиоактивных веществах и высвобождается в результате деления тяжелых ядер или синтеза легких. Гравитационная - энергия, которая обусловлена тяготением массивных тел (сила тяжести).

Тепловая энергия возникает в связи с хаотичным движением молекул, атомов и других частиц. Она может выделяться в результате механического воздействия (трения), химической или ядерной (деление ядра). Чаще всего тепловая энергия возникает в результате сжигания различных видов топлива. Ее используют для отопления, выпаривания, нагревания и других технологических процессов.

Тепловая энергия - это одна из форм энергии, возникающая в результате механических колебаний структурных элементов какого-либо вещества. Параметром, позволяющим определить возможность использования его в качестве источника энергии, является энергетический потенциал. Выражаться он может в киловатт (тепловых)-часах или в джоулях.

Источники тепловой энергии подразделяют на:

  • первичные. Энергетическим потенциалом вещества обладают вследствие природных процессов. К таким источникам можно отнести океаны, моря, ископаемые горючие вещества и др. Первичные источники подразделяются на неисчерпаемые, возобновляющиеся и невозобновляющиеся. К первым относятся термальные воды и вещества, которые могут быть использованы для получения термоядерной энергии и т.п. Ко вторым относят энергию солнца, ветра, водных ресурсов. Третьи включают газ, нефть, торф, уголь и т.д.;
  • вторичные. Это вещества, энергетический потенциал которых напрямую зависит от деятельности людей. Например, это нагретые вентиляционные выбросы, городские отходы, горячие отработанные теплоносители промышленных производств (пар, вода, газ) и т.п.

Тепловая энергия в настоящее время производится при помощи сжигания ископаемого топлива. В качестве основных источников выступают неочищенная нефть, уголь, За счет обеспечивается 90% общего энергопотребления. Однако с каждым днем все больше увеличивается использование атомной энергии.

Возобновляемые источники почти не используются. Это связано со сложностью технологии их преобразования в тепловую энергию, а также низким энергетическим потенциалом некоторых из них.

Тепловая энергия возникает в результате взаимодействия фотонов инфракрасного диапазона с внешними электронами. Последние поглощают фотоны и перемещаются на дальние от ядра орбиты. Таким образом, объем вещества увеличивается. Через фотоны инфракрасного диапазона происходит передача тепловой энергии. В частности фотоны при соударениях молекул и атомов между собой перескакивают из зоны повышенной концентрации носителей тепловой энергии в те зоны, где она понижена.

Тепловая энергия может быть выражена в формуле: ΔQ = c.m.ΔT. С - обозначает удельную теплоемкость вещества, m -массу тела, а ΔT является разностью температур.

Система измерения теплоты два века назад базировалась на представлении о том, что тепловая энергия сохраняется, никуда не пропадает, а только переходит из одного места в другое. Мы до сих пор пользуемся следующими правилами:

Для измерения количества тепла заставим его нагревать воду и умножим массу воды на приращение температуры. Если масса взята в кг, а разность А (температур) - в градусах Цельсия, то произведение их будет теплотой в Кал, или ккал.

При передаче тепловой энергии какому-то другому веществу, то сначала массу нужно помножить на повышение температуры, как и для воды, а результат затем помножить на «удельную теплоемкость» вещества.

Чтобы измерить тепловую энергию, выделяемую определенным количеством топлива, необходим специальный прибор для сжигания образца и передачи образовавшегося тепла без заметных потерь воде. Подобным испытаниям были подвергнуты почти все виды топлива. Взвешенный образец, как правило, вместе со сжатым кислородом помещался в толстую металлическую бомбу, которая погружалась в сосуд с водой. Затем с помощью электричества образец сжигали и измеряли возрастание температуры воды. Вместе с водой нагревалась и бомба со всем ее содержимым; это необходимо было учитывать.

Тепловая энергия и молекулы

Любая удачная попытка передать энергию газу нагревает его, увеличивая давление (объем). В кинетической теории мы связывали это с увеличением кинетическая энергия хаотически движущихся молекул. Тепловая энергия газа — это просто кинетическая энергия в молекулярном масштабе. То же самое можно сказать как о жидких, так и о твердых телах с той лишь оговоркой, что необходимо учитывать кинетическую энергию вращения молекул и энергию их колебаний.

Представьте себе пулю, которая с огромной скоростью ударяется о препятствие и вследствие трения застревает в нем. В этом случае кинетическая энергия пули передается молекулам окружающего воздуха и дерева, сообщая им дополнительное движение. Огромная кинетическая энергия исчезает, а вместо нее появляется тепловая энергия. Если считать, что теплота - это «обобществленная» кинетическая энергия, то богатство, состоящее в огромном количестве упорядоченной кинетической энергии, распределяется среди всех хаотически движущихся молекул - «достойных» и «недостойных». Когда свинцовая пуля попадает в стенку, большая часть ее богатого запаса кинетической энергии превращается в энергию колебаний отдельных атомов свинца и стенки; энергия обученной армии вырождается в беспорядочную толчею толпы.

При любых обсуждениях вопросов, связанных с использованием энергии, необходимо отличать тепловую энергию (энергию хаотического движения) от энергии упорядоченного движения, известной в технике как свободная энергия. Так, кинетическая энергия летящей пули представляет собой энергию упорядоченного движения - она вся заключена в пуле. Мы называем ее свободной энергией, поскольку ее целиком можно превратить в потенциальную энергию; для этого надо просто выстрелить вертикально вверх! Энергия деформации также упорядочена, и мы называем ее тоже свободной энергией, ведь пружина может затратить ее на поднятие груза. Химическая энергия практически вся свободна, как и электрическая энергия и энергия высокотемпературного излучения. Любая из этих форм энергии позволяет использовать всю энергию. Хаотическая тепловая энергия имеет один существенный недостаток. На какие бы хитрости мы ни шли, в механическую энергию способна превратиться лишь часть тепловой.

Это происходит из-за того, что даже в лучшей из мыслимых машин для превращения теплоты в механическую энергию некоторая доля теплоты передается холодильнику. Иначе машина но сможет повторить рабочий цикл. Мы не в силах полностью упорядочить случайное движение молекул, превратив его энергию в свободную. Некий хаос всегда останется. Мысленный эксперимент с идеальной тепловой машиной говорит, что максимальная доля тепла, которую можно использовать, составляет (Т1-Т2)/Т1, где Т1 - абсолютная температура «нагревателя», или котла, а T2 - абсолютная температура холодильника машины (о смысле абсолютной температуры см. гл. 27). Так, пар под высоким давлением с температурой 500° К (227° С), превращающийся в воду с температурой 300° К (27° С), может дать к. п. д. не больше (500-300)/500, или 40% Такая паровая машина должна выбрасывать, помимо реальных потерь, 60% своего тепла.

Отсюда вполне очевидным становится вывод, что тепловая энергия и тепловые машины являются наиболее узким местом в современной энергетике. Все машины занимаются непрерывным производством тепловой энергии , и ее выбросом в окружающую среду. Причем, если проблемы эффективного преобразования в электрическую энергию вполне возможно решить, усовершенствуя полупроводниковые и нано технологии, то проблему малого кпд тепловой машины решить нельзя.

Максимальный к. п. д. равен (Т1-Т2)/Т1, или 1-(Т2/Т1). Так что чем выше Т1 (или чем меньше Т2), тем ближе к. п. д. к единице. Чтобы уменьшить затраты, силовые установки стараются делать с возможно большей температурой Т1 нагревателя, или котла. Серьезные ограничения возникают из-за масла, которое начинает гореть, и металла, который начинает плавиться. Температуру же Т2, при постоянном подводе тепла нельзя надолго сделать ниже температуры окружающей среды. Практически у нас нет способа непосредственно использовать химическую или атомную энергию . Мы должны сначала превращать ее в тепловую энергию, а уж после этого нам не избежать больших тепловых потерь.

Как это ни парадоксально, но такие же рассуждения, основанные на мысленных экспериментах, говорят, что когда возникает другая потребность - получить теплоту из свободной энергии, т. е. когда мы хотим обогревать квартиру электричеством, мы можем достичь высокой эффективности (к. п. д.).

Используя свободную энергию, мы с помощью небольшой машины можем «перекачивать» тепловую энергию с холодной улицы в теплую комнату. В сущности, такой тепловой помпой для потребления тепловой энергии может служить вывернутый наизнанку холодильник, морозильное отделение которого помещено вне комнаты.

Используя солнечный свет, уголь пли гидроресурсы для получения полезной работы вроде питания электроламп, привода токарного станка или перекачивания воды на вершину холма и т. д., мы вновь и вновь приходим к тепловой энергии как к почти неизбежному побочному (вследствие трения) и наиболее вероятному конечному продукту. Когда свет лампы поглощается стенами, станок режет металл или вода стекает назад в океан, полученная первоначально из топлива энергия, в конце концов, целиком превращается в теплоту. А если мы и вначале имели дело с теплотой, то на конечном этапе будет более низкая температура. Она практически не пригодна для дальнейшего использования. Можно, конечно, придумать и другой конец - позволить свету излучаться в межзвездное пространство, станку закручивать пружину, а воду оставить па вершине холма, но, как правило, конечный продукт все-таки тепловая энергия. (Вся энергия от сгорания бензина во всех автомобилях мира за прошлый год, перешла, в конечном счете, в нагревание воздуха и земли — такой вот получается ).

Просто о сложном – Тепловая энергия

  • Галерея изображений, картинки, фотографии.
  • Определение количества тепловой энергии, потери энергии – основы, возможности, перспективы, развитие.
  • Интересные факты, полезная информация.
  • Зеленые новости – Определение количества тепловой энергии, потери энергии.
  • Ссылки на материалы и источники – Тепловая энергия.

Здесь я не буду давать словарное определение тепловой энергии . Попытаюсь все объяснить на пальцах. Статья не для специалистов.

Подумайте, чем отличается горячая вода от холодной, что влияет на температуру воды?

Она отличается разным количеством содержащейся в ней теплоты. Эту теплоту, или по другому тепловую энергию, нельзя увидеть или потрогать, можно только почувствовать. Любая вода с температурой больше 0°С содержит какое-то количество теплоты. Чем выше температура воды (пара или конденсата) тем больше в ней содержится теплоты.

Измеряется теплота в Калориях, в Джоулях, в Мвт/ч (Мегаватт в час), не в градусах °С.

Так как тарифы утверждаются в гривнах за Гигакалорию, то за единицу измерения будем брать Гкал.

Таким образом, горячая вода состоит из самой воды и содержащейся в ней теплоэнергии или теплоты (Гкал). Вода как бы насыщена гигакалориями. Чем больше Гкал в воде, тем она горячее. Иногда горячую воду называют теплоносителем, т.е. тепло несёт.

В системах отопления теплоноситель (горячая вода) приходит в систему отопления с одной температурой, а выходит с другой. То есть пришел с одним количеством теплоты, а вышел с другим. Какую-то часть теплоты теплоноситель отдает в окружающую среду через радиаторы отопления. За эту часть, которая не вернулась в систему, и которая измеряется в Гкал, кому-то надо заплатить

При горячем водоснабжении (или порыве в системе отопления) мы потребляем всю воду и, соответственно, все 100% Гкал в ней, ничего обратно в систему не возвращаем.

Таким образом при установке узлов учета в многоквартирном доме или частном доме мы будем платить непосредственно за потребленное тепло (Гкал) нашим помещением. В случае, если прибора учета нет — нам будут насчитывать сумму, за потребленное нами тепло «по тарифу «. Причем это «по тарифу» может в разы превышать фактически потребленное нами количество тепла. Именно поэтому сегодня как никогда встает вопрос установки узлов учета тепловой энергии.

Что представляет из себя учет тепловой энергии.

Узел учета тепловой энергии — это комплекс приборов, поэтому и называется узел.

Технически это выглядит следующим образом. В трубопроводы тепловых сетей (в подачу, в обратку, в сеть ГВС) врезаются:

  • расходомеры — измеряют количество пройденного теплоносителя;
  • температурные датчики — измеряют температуру теплоносителя;
  • и (не всегда) датчики давления — измеряют давление в трубопроводах.

К приборам нужно подать какое-то напряжение, автономное или сетевое, в зависимости от типа прибора.

Данные приборы необходимо врезать максимально приближенно к границе балансовой принадлежности (БП) и эксплуатационной ответственности (ЭО), т.е. к тому месту, откуда начинаются ваши сети. К договору теплоснабжения должен быть соответствующий акт или приложение.

Если приборы врезаются не на границе БП и ЭО, то теплоснабжающая компания рассчитывает теплопотери на участке тепловых сетей от границы БП до места установки регистрирующих приборов по каждому трубопроводу с учетом метода прокладки (подземная/наземная), диаметра сети и наличия тепловой изоляции трубопроводов.

Оплата за теплопотери начисляется дополнительно к показаниям узла учета теплоты балансовым методом. В счете на оплату обычно выделяют отдельной строкой. В некоторых теплоснабжающих компаниях теплопотери не учитываются, начисляют по показаниям теплосчетчика.

От измерительных приборов по проводам идут сигналы на теплорегистратор, или тепловычислитель, или теплосчетчик, кому как больше нравится. Теплорегистратор записывает данные себе в память и хранит в своем архиве определенный заводом-изготовителем срок.

Например, часовые показания могут храниться за последние 15 дней, суточные — за последние 45 дней, месячные — за последние 12 месяцев.

На основании этих данных теплорегистратор математически вычисляет Гкал, за которые мы и платим.

Однако не сама установка узла учета тепловой энергии ведет к экономии!

Если установить узел учета тепла и при этом считать, что теперь настало счастье — это полное заблуждение! Для экономии необходимо, что бы теплопоставляющая компания начала меньше начислять, собственно говоря «по счетчику». Для этого необходимо снимать данные со счетчика и передавать их в теплосеть ! Именно это приведет к экономии!