Солнечные батареи нового поколения. Батареи просят солнца Инфракрасные солнечные батареи нового поколения

Получил партию солнечных панелей мощностью по 100 ватт, 12 вольт поли кристалл, в данном видео можно будет посмотреть насколько солнечные панели удешевили, чтобы поддержать низкую цену. В данном ролике я вам покажу первые недостатки, которые я увидел сразу на данной панели, после того как достал. Опять таки место на карте кончилось не в подходящий момент, отсюда часть я допишу текстом.

Солнечные элементы используются с КПД 22% и 4 шины на элемент, это хороший плюс, но если учесть что провода, которые стали устанавливать, обычная медь и реального сечения 2.5 квадрата, и при этом они не припаиваются, а завальцовываются. То, это либо минус, либо как бесплатный подарок. Так как МС4 коннекторы, которые используются на проводах, ну и сама коробка с резинками под IP65 сделаны из очень низкого качества пластика. Причем, если коробка сделана из еще терпимого качества пластика, то МС4 тут одноразовые. Если вы не планируете ставить на постоянную дислокацию на улицу, то тут еще можно смирится. А вот если вы берете подобные панели именно для постоянной установки, то тут сразу стоит запастись качественными проводами, заглушками под коробки и качественными МС4 коннекторами.

Зато провода в этой партии идут уже длинные, проверить или временно подключится пойдут. Но все таки рекомендую использовать другие коннекторы и провода хотя-бы 6 квадратов.

Что касаемо профиля панели, то тут явное удешевление почти в два раза по сравнению с панелями 2016 года. Зато наверно, это единственный производитель с такой демократичной ценой за солнечную панель на рынке. Ведь самое главное — это не провода и коробки или профиль, а именно стекло, бутерброд из пластика и Ева пленки, и солнечных элементы.

Более короткий тест солнечной панели 2017 года уже отснят и появится чуть позже. В этом ролике я даю информацию тем, кто еще тешит себя надеждой, что цена будет ниже, а панели все таки будут выше по качеству. К сожалению, стоимость панелей варьируется по разным факторам, и тут так же сильно влияет честность перекупщиков к завышению стоимости на единицу солнечной энергии, которая может быть не оправдано завышенной при низком качестве сборки панели.

Да и по качеству сборки солнечных панелей экспертов у нас мало, а чтобы что-то знать про панели нужно иметь представление о рынке и меняющихся тенденциях в сборке солнечных панелей. Узнай, как игроки казино зарабатывают на этом реальные деньги играя на игровых автоматах онлайн.

Данное видео снималось в день получения солнечных панелей, которые получила компания Эксморк в этом году.

20 лет назад электричество, добытое из солнечной энергии, казалось нам просто фантастикой. Но уже сегодня уже никого не удивишь.

Жители стран Европы давно поняли все преимущества солнечной энергии, и теперь освещают улицы, обогревают дома, заряжают различные приборы и т.д. В этом обзоре речь пойдет солнечных батареях нового поколения, созданных для облегчения нашей жизни и сохранения окружающей среды.

Типы СБ

Принцип работы солнечной батареи. (Для увеличения нажмите) Сегодня насчитывается более десяти видов солнечных устройств, которые используются в той или иной отрасли. Каждый вид имеет свои характеристики и эксплуатационные особенности.

Принцип работы кремниевых солнечных батарей: на кремниевую (кремниево-водородную) панель попадает солнечный свет. В свою очередь, материал пластины изменяет направление орбит электронов, после чего преобразователи дают электрический ток.

Эти устройства можно условно поделить на четыре вида. Ниже рассмотрим их подробнее.

Монокристаллические пластины

Монокристаллическая СБ Отличие этих преобразователей в том, что светочувствительные ячейки направлены только в одну сторону.

Это дает возможность получать самый высокий КПД - до 26%. Но при этом панель должна все время быть направлена на источник света (Солнце), иначе мощность отдачи существенно снижается.

Другими словами, такая панель хороша только в солнечную погоду. Вечером и в пасмурный день такой вид панелей дает немного энергии. Такая батарея станет оптимальной для южных районов нашей страны.

Поликристаллические солнечные панели

Поликристаллическая СБ Пластины солнечных панелей содержат кристаллы кремния, которые направлены в разные стороны, что дает относительно низкий КПД (16-18%).

Однако главным преимуществом этого вида солнечных панелей - в отличной эффективности при плохом и рассеянном свете. Такая батарея все равно будет питать аккумуляторы в пасмурную погоду.

Аморфные панели

Аморфная СБ Аморфные пластины получают путем напыления кремния и примесей в вакууме. Слой кремния наносится на прочный слой специальной фольги. КПД подобных устройств достаточно низкий, не более 8-9%.

Низкая «отдача» объясняется тем, что под действием солнечных лучей тонкий слой кремния выгорает.

Практика показывает, что после двух-трех месяцев активной эксплуатации аморфной солнечной панели эффективность падает на 12-16%, в зависимости от производителя. Срок службы таких панелей не более трех лет.

Преимущество их в низкой стоимости и возможности преобразовывать энергию даже в дождливую погоду и туман.

Гибридные солнечные панели

Гибридные СБ Особенность таких блоков в том, что в них объединены аморфный кремний и монокристаллы. По параметрам панели похожи на поликристаллические аналоги.

Особенность таких преобразователей в лучшем преобразовании солнечной энергии в условиях рассеянного света.

Полимерные батареи

Полимерная СБ Многие пользователи считают, что это перспективная альтернатива сегодняшним панелям из кремния. Это пленка, состоящая из полимерного напыления, алюминиевых проводников и защитного слоя.

Особенность ее в том, что она легкая, удобно гнется, скручивается и не ломается. КПД такой батареи составляет всего 4-6%, однако низкая стоимость и удобное использование делает такой вид солнечной батареи очень популярной.

Совет специалистов: чтобы сэкономить время, нервы и деньги, покупайте солнечное оборудование в специализированных магазинах и на проверенных сайтах.

Новые разработки

С каждым днем технологии стремительно развиваются, и производство солнечных моделей не стоит на месте. Предлагаем ознакомиться с последними новинками на рынке солнечных систем.

Солнечная черепица

Солнечная черепица Дабы не испортить эстетику кровли дома и при этом получать бесплатную энергию солнца, можно рассмотреть вариант с покупкой солнечной черепицы. Этот отделочный материал состоит из достаточно прочного корпуса и встроенных фотоэлементов.

Кровельное покрытие вырабатывает достаточно энергии, которую можно использовать в бытовых условиях. При использовании такого материала-оборудования можно питать отдельно выделенную электросеть или сбрасывать электроэнергию в общую сеть.

В любом случае общие затраты на электроэнергию снижаются.

Лидером по производству солнечной черепицы является компания из России - «Инноватикс». Вот уже более десяти лет она продает высококачественные отделочные материалы со встроенными фотоэлементами.

Интересно, что такую черепицу тяжело отличить от обычного кровельного материала даже при близком расстоянии.

Преимущества солнечной черепицы:

  1. Полупроводниковый материал, который используется при соединении фотоэлементов, сократили в 4 раза.
  2. Инновационная система фокусировки солнечного света позволяет получать в 5 раз больше энергии.
  3. Средний срок эксплуатации солнечной черепицы составляет 20 лет.
  4. Относительно небольшой вес черепицы не имеет негативного давления на кровлю.
  5. Прочность солнечной черепицы позволяет ее использовать при любых погодных условиях. Черепица спокойно выдерживает град и другие осадки.
  6. Простота креплений позволяет надежно устанавливать черепицу в самые короткие сроки.

Солнечное окно

Солнечное окно Буквально три года назад на рынке солнечных технологий появилась новая разработка американских конструкторов из «Pythagorus Solar Windows». Суть инновации в том, чтобы использовать оконное стекло в качестве панели, добывающей солнечную энергию.

Подобные панели по полной используют в высотках европейских городов. Это позволяет существенно экономить электроэнергию.

Технология солнечных окон представляет собой использование фотоэлементов в виде кремниевых полос, встроенных между стеклами. Помимо того, что окна будут вырабатывать дополнительную электроэнергию, в дополнение окно будет защищать комнату от перегрева, задерживая солнечный свет. Внешне солнечные окна похожи на привычные жалюзи.

Другой производитель солнечных окон «Solaris Plus» предлагает использовать специальные стекла, обработанные специальным кремниевым напылением. Полосы будут преобразовывать солнечные лучи в электроэнергию, которая будет питать АКБ через полупрозрачные проводники.

Гибридные фотоэлементы

В 2015 году американскими конструкторами были разработаны гибридные фотоэлементы, позволяющие преобразовывать электроэнергию не только из солнечного света, но и тепла. Суть конструкции заключается в применении фотоэлементов из кремния и полимерной пленки «PEDOT».

Фотоэлемент фиксируется с пироэлектрической пленкой и соединяется с термоэлектрическим оборудованием, способным преобразовывать тепло в электрический ток.

Тестирование новой гибридной технологии показало, что новая термическая пленка способна вырабатывать в 10 раз больше электроэнергии, чем стандартная солнечная панель.

Системы на основе биологической энергии

Исследования, проводимые специалистами из университета Кембриджа, пока не дали конкретных результатов в области разработки солнечных систем нового поколения, преобразовывающих биологическую энергию (фотосинтез). Последние результаты показали КПД менее 0.4 %.

Но разработки не останавливаются, а ученые обещают, что в ближайшем будущем получать энергию от биологических солнечных систем.

Варианты таких батарей впечатляют:

  1. Лампа дневного света, работающая от обычного лесного мха.
  2. Электростанции в виде больших листьев.
  3. Панели из растений для домашнего пользования.
  4. Мачты из растений, из которых будут добывать электроэнергию и многое другое.

Надеемся на то, что в скором будущем гелиосистемы нового поколения будут использоваться по максимуму. Это даст возможность обеспечить электроэнергией каждый дом на планете, без вреда для окружающей среды.

Смотрите видео, в котором рассказывается о солнечных батареях нового поколения:

Ученые из МИСиС разработали гибкую солнечную батарею втрое дешевле кремниевых панелей

Источник: http://tass.ru/nauka/3193630

МОСКВА, 11 апреля. /ТАСС/. Ученые из Научно-исследовательского технологического университета «МИСиС» совместно с коллегами из университета Техаса в Далласе разработали гибкую солнечную батарею на основе металло-органического соединения, стоимость которой по меньшей мере втрое ниже кремниевых панелей, сообщает пресс-служба университета.

Разработанная учеными НИТУ «МИСиС» гибкая солнечная батарея

«Группа ученых НИТУ «МИСиС» под руководством профессора Анвара Захидова представила технологию создания тонкопленочного фотоэлемента на основе гибридного металл- органического соединения — перовскита, позволяющего преобразовывать энергию солнечного излучения в электрическую с КПД выше 15%, при планируемых показателях более 20%… На сегодняшний день расчетная стоимость квадратного метра перовскитных солнечных панелей составляет менее 100 долларов США, тогда как квадратный метр лучших кремниевых обходится в 300 долларов США. В массовом производстве разница станет 4-6-кратной», — говорится в сообщении.

Солнечные батареи на основе кремния отличаются высокой стоимостью из-за высокотехнологичного, энергоемкого и токсичного производства кремния. Кроме того, они значительно более хрупкие и менее гибкие по сравнению с разработкой российских ученых. Особенность же перовскитной технологии в том, что активные слои солнечных элементов на его основе можно наносить из жидких растворов на тонкие и гибкие подложки. Это позволяет размещать солнечные батареи на поверхностях любой кривизны: оконные полупрозрачные «энергошторы» домов и машин, фасады и крыши зданий, бытовая электроника и многое другое.

«Главным преимуществом гибридных перовскитов является простота их получения из обычных солей металлов и промышленных химических органических соединений, а не из дорогих и редких элементов, используемых в высокоэффективных полупроводниковых аналогах, таких, как солнечные батареи на основе кремния и арсенида галлия. Не менее важно, что материалы на основе перовскита могут быть использованы для печати фото-электроники не только на стекло, но и на другие материалы и поверхности. Это делает батареи гораздо дешевле, чем при более сложных способах получения тонкопленочных солнечных элементов», — сказал Захидов, слова которого приводятся в сообщении.

Существенное снижение стоимости производства солнечных батарей будет способствовать увеличению доли экологически чистых, возобновляемых источников энергии в общем энергетическом «пироге».

Российские ученые разработают пластичные солнечные батареи нового типа

Источник: http://tass.ru/ural-news/3174602

ЕКАТЕРИНБУРГ, 4 апреля. /ТАСС/. Российские ученые планируют разработать первые опытные образцы пластичных солнечных батарей нового поколения к 2018 году, сообщил корр. ТАСС научный сотрудник Управления по научной инновационной деятельности Южно-Уральского государственного университета Олег Большаков. Проект реализуется при грантовой поддержке Российского научного фонда.

«Совместно с коллегами из московского Института органической химии мы работаем над созданием пластичных тонкопленочных солнечных батарей нового поколения уже в течение 1,5 лет. Первая партия материала для солнечных батарей уже готова, она будут тестироваться на протяжении 2-3 месяцев в специальной лаборатории при университете Эдинбурга в Шотландии», — сказал Большаков. «В России пока необходимых сертифицированных лабораторий нет, поэтому мы обратились к зарубежным специалистам. По плану к 2018 году мы выпустим первые опытные образцы», — добавил он.

По словам ученых, главная особенность солнечных батарей нового типа — органический светочувствительный материал. «Такие батареи не будут токсичными, также они не требуют большого количества светочувствительного материала — в 1000 раз меньше по сравнению с батареями предыдущих поколений, поэтому они будут и наиболее доступными по цене. По этим причинам разработки в этом направлении ведутся по всему миру. Но аналогов нашей технологии пока нет, так что реализация нашего проекта даст нам большие преимущества в альтернативной энергетики будущего», — добавил Большаков.

Он также отметил, что на данный момент специалистам предстоит выявить статистическую зависимость между структурой материалов и эффективностью. «Каждый фотоэлемент характеризуется двумя основными параметрами — устойчивостью и энергоэффективностью. Необходимо определить наиболее удачные варианты из тех, которые мы отправили в лабораторию, после чего их уже можно будет применять к различным поверхностям. Дальнейшая научная работа будет связана с усовершенствованием материалов», — пояснил ученый.

Кто запретит нам мечтать!

Всё чаще учёными рассматривается вечный двигатель как один из видов альтернативных источников энергии, возобновляемых природой безвозмездно. Если брать точку зрения закона сохранения энергии, тогда такой двигатель невозможен. Но названный закон действует только для замкнутых электрических сетей.

Мы подключаем электроприбор в сеть вилкой двумя проводниками. Подключи один — электротока не будет, потому что цепь не замкнута. А Николо Тесла, сербский учёный, ещё в начале прошлого века продемонстрировал передачу тока по одному проводнику. И был уже на пороге открытия передачи тока вообще без проводов. Тем самым, учёный доказал, что вечный двигатель возможен, но при условии разомкнутой сети.

Тесла одним из первых понял, что Земля и околоземное пространство представляют из себя незамкнутую электрическую сеть. Значит, закон сохранения энергии при такой сети не действует и есть возможность получать из космоса неиссякаемую энергию и приводить в движение вечные двигатели. Впервые воочию учёный продемонстрировал свою идею в 1931 году на бесшумном автомобильном электродвигателе и ездил целую неделю без аккумуляторов и зарядных устройств.

Современники ему не поверили. Учёного обозвали шарлатаном. Типичный пример для любой эпохи, когда человека, опережающего своё время в открытиях или идеях, завистники или шельмуют, или заключают в психушку. Слава Богу, чаша сия миновала Тесла, но ненормальным его считали до конца его дней и шельмованию он подвергался постоянно.

Однако, и поныне есть скептики, не верящие ни в какие чудеса. По их мнению, природные двигатели существуют, но их нельзя назвать «вечными», потому что они не постоянны. Сейчас всё крутится-вертится, через час ветер затих, солнце скрылось за облака или наступила ночь и «вечный» двигатель замолчал. Другое дело гидроэлектростанция, или атомная – там есть возможность получить «вечный» двигатель на продолжительное время, но назвать его абсолютно вечным тоже нельзя.

По большому счёту, правомерность вечных двигателей не стыкуется с Законом сохранения энергии, который до сих пор не опровергнут ни одним из известных лабораторных экспериментов. Таково мнение скептиков.

Между прочим, вы сами можете сделать вечный двигатель:

Так что, теперь и мечтать нельзя, как это успешно делал Николо Тесла? Он мечтал о передаче электроэнергии на большие расстояния без проводов и разрабатывал новые подходы к решению данной проблемы. Ему удавалось включать и выключать электродвигатель на значительном удалении от него, включать лампочки без всякой проводки. Это происходило в 1892 году, а секреты великого учёного не разгаданы до сих пор.

Ищем слабые места в законе

Закон сохранения и превращения энергии в свободной интерпретации трактуется так: в любых природных явлениях энергия просто так не возникает и не исчезает. Она переходит из одного вида в другой, но при этом её значение уменьшается. И немыслимо думать ни о каком вечном двигателе без приложения постоянных дополнительных усилий.

Но люди веками ищут возможность создания вечного двигателя. Вот примеры нескольких изобретений:

Учёные ломают головы над тем, как бы обойти этот тормозной закон и двинуть науку на службу человечества по пути, который нащупал Николо Тесла 122 года тому назад и унёс с собой в могилу свои секреты. Как найти эти природные «дополнительные усилия», чтобы без участия человека с помощью возобновляемых источников энергии заработал вечный двигатель?

Кое что учёными в этом направлении уже сделано. Институт имени А.Иоффе в Петербурге открыл центр по изготовлению тонкоплёночных солнечных батарей, способных вырабатывать энергию не только при прямом воздействии солнечных лучей, но даже при инфракрасном излучении. Значит, — ночью.

Зацепка найдена, которая может привести к тому, что на законе сохранения энергии можно будет в ближайшем времени поставить жирный крест. К такому же мнению пришли и учёные из подмосковной Дубны, речь о которых в следующем разделе.

До утренней встречи, солнце!

Почему у нас в стране использование солнечной энергии на таком низком уровне? Да и мир не может гордиться преобладающим обузданием возобновляемой солнцем энергии. В чём причина?

Солнце здесь не причём. Во-первых, до настоящего времени человеческое сообщество не научилось превращать дневной свет в электрический ток с должным КПД. Во-вторых, выпускаемые солнечные батареи работают только днём и в ясную солнечную погоду. И, в-третьих, не изобретены ещё эффективные и безопасные аккумуляторы для достаточного накопления энергии, которой хватит до следующего светового дня. А что тогда делать в мёрзлой тундре, территория которой в нашей стране огромна? Там ведь до восхода солнца полгода надо ждать!

Но, к счастью, о таком положении дел можно теперь говорить в прошедшем времени. В подмосковной Дубне был продемонстрирован первый образец принципиально нового фотоэлемента. Он-то и стал главным компонентом солнечной батареи, авторами которой являются учёные центра института ядерных исследований. Новая батарея не имеет себе подобных, а внедрение открытых фотоэлементов приведёт к настоящей технической революции в освоении солнечной энергетики.

Пару слов надо сказать о принципе работы новой солнечной батареи. Она состоит из так называемого гетероэлектрического фотоэлемента, который одинаково хорошо действует как в видимом, так и в инфракрасном излучении. Кроме того, новая батарея снабжена гетероэлектрическим конденсатором, обладающим значительной емкостью, имея при этом малый объём.

Результат превзошёл все ожидания российских учёных. Если КПД старых фотоэлементов составлял 5, максимум 7%, то для батарей с использованием новых фотоэлементов результат ошеломляющий. Он может достичь 30% и выше. Мало того, изделия имеют уникальную способность работать даже ночью, прекрасно реагируя на инфракрасное излучение.

Появилась возможность утверждать, что скоро вступят в строй не только солнечные батареи, но и «звездные», способные извлекать электроэнергию в любое время суток и спокойно, в рабочем ритме встречать утреннее солнце, сколько бы ни длилась ночь. И с новой силой заряжаться на будущую бесперебойную работу. Чем не вечный двигатель, работающий на возобновляемой энергии!

Мнение сомневающегося:

«Вот это глобальные перспективы! Появится возможность на даче установить солнечные батареи! Да плюс энергию ветра использовать!

Но, на мой взгляд, массово не будут внедряться экологически чистые источники. «Углеводородистым» магнатам такое не по вкусу. Они будут продолжать травить всех и самих себя химией и грести бабки на наших болезнях. Им здоровая нация не нужна. Потому что она станет неуправляемой»!

Мнение здравомыслящего:

«На первый взгляд, можно утвердиться во мнении, что гетероэлектрические элементы солнечных батарей — это сплошная фантазия. Но такое впечатление ошибочное. Яростное сопротивление монополий говорит об обратном. Значит, за новыми солнечными батареями большое будущее, если богачи не на шутку всполошились».

Мнение пессимиста:

«Гетероэлектрики, бесспорно, могут привести мир к геополитическому переделу. Но этого не допустят! Интересы политиков и денежных мешков не дадут оторваться от потребления углеводородного сырья. Слишком большие ставки сделаны. Владельцы полезных ископаемых горло перегрызут за своё безбедное существование».

Мнение оптимиста:

«Это, конечно, безрадостно, но отчаиваться не следует. Сегодня интернет вполне позволяет изобретателям нашей страны, да и всего мира, объединиться и общими усилиями думать над проектами, внедрять их в производство, находить спонсоров и т.д. Не исключена и такая возможность, что вал народной инициативы с головой накроет бюрократическую волокиту и появятся работающие модели. Тогда процесс станет необратимым».

Источник – Блог «Экология в России» Льва Миролюбова из Ижевска.

«Здравствуй племя, младое, незнакомое»

Речь не о людях, а о новом поколении солнечных батарей. Ученым удалось разработать такие батареи, которые способны получать электричество из солнечной энергии даже тогда, когда солнце спрячется в облаках или зайдёт до утра за горизонт.

Знакомьтесь – пластичные солнечные батареи! Их можно наносить на раму как краску, или наклеивать в виде плёнки. Их главное достоинство — они способны улавливать инфракрасное излучение. Это значит, работать ночью так же эффективно, как и днём. Согласитесь, — немалый шаг на пути к прогрессу!

Существующие материалы для изготовления традиционных солнечных батарей улавливали лишь видимый солнечный свет, хотя другая большая часть излучения находилась в инфракрасном спектре.

Изобретённый материал – такой пластичный состав, который способен реагировать как на инфракрасную, так и на видимую часть спектра. Благодаря таким конструкциям появилась возможность улавливать значительный объём солнечной энергии и вырабатывать электроэнергию.

Но и это не самое важное. С внедрением в производство солнечных батарей нового поколения с применением необычного материала стоимость изделий резко снизилась, что даёт надежду массового использования возобновляемых источников в виде энергии солнца.

Российским нанотехнологиям – быть!

Ранее солнечные батареи изготавливались на кремниевой основе. А кремний получали методом разложения взрывоопасного газа силана. Его молекула содержит один атом кремния и четыре атома водорода. Учёные добились замены чистого кремния на получение тетрафторида кремния, что исключило всякую опасность при изготовлении изделия.

При новой технологии можно менять состав кремния, улучшая тем самым его электрические свойства. Такие образцы уже получены в Нижнем Новгороде, что дало возможность получать тонкие и гибкие плёнки, способные работать даже ночью. Это открыло прямую дорогу для изготовления более эффективных и дешёвых материалов для солнечных батарей нового поколения.

Кремниевые батареи используются и на больших солнечных электростанциях, создаваемых в альтернативной энергетике, и уже начали уверенно завоёвывать частный рынок для россиян, озабоченных загрязнением природы и ростом цен на электроэнергию.

КПД батарей нового поколения достигает 30%, против прежних, более дорогих и громоздких, имеющих КПД всего лишь 5-7%.

Результат работы нижегородских практиков в рамках разработки приоритетных направлений технологического комплекса России заложил основу создания новой технологии в нашей стране.

Экология потребления.Наука и техника:Швейцарские физики продемонстрировали работу нового поколения солнечных батарей, обладающих рекордно высоким КПД и при этом остающихся достаточно дешевыми по сравнению с обычными фотоэлементами.

Швейцарские физики продемонстрировали работу нового поколения солнечных батарей, обладающих рекордно высоким КПД и при этом остающихся достаточно дешевыми по сравнению с обычными фотоэлементами.

Пленки из аналога необычного природного минерала помогли физикам из Швейцарии создать новый вид дешевых солнечных батарей, преобразующих рекордные 20% энергии солнечного света в электричество, говорится в статье, опубликованной в журнале Nature.

«Лучшие прототипы солнечных батарей на перовскитах используют особые материалы, которые очень сложно изготовлять и очищать. Их минимальная стоимость составляет около 300 евро за грамм вещества, что делает невозможным их коммерческое использование. Для сравнения, наше вещество, FDT, легко изготовлять и оно в пять раз дешевле, и при этом обладает теми же качествами», - заявил Мохаммад Назируддин (Mohammad Nazeeruddin) из Федеральной политехнической школы Швейцарии в Лозанне (EPFL).

В последние годы ученые создали несколько экзотических материалов, позволяющих увеличить эффективность солнечных батарей в несколько раз. В частности, внимание физиков все больше привлекает минерал перовскит и его синтетические аналоги, тонкие пленки которого являются полупроводниками, хорошо преобразующими энергию света в электричество.

Большинство свето-поглощающих материалов обладают симметричной кристаллической структурой, что и позволяет электронам свободно течь в разные стороны. Перовскит имеет кубическую кристаллическую решетку, образованную атомами одного металла. Внутри каждого куба находится восьмигранник, образованный атомами кислорода, внутри которого «сидит» атом другого металла.

Взаимодействие между этими атомами заставляет электроны течь в едином направлении, благодаря чему солнечные батареи на базе перовскита обладают крайне высоким КПД, около 12-15%. Назируддин и его коллеги смогли достичь еще более высокого уровня эффективности, не повышая стоимости батареи, создав вещество FDT.

Оно относится к категории так называемых «переносчиков дырок» – особых субстанций, помогающих удалять положительные заряды, так называемые «дырки», из пленки перовскита после того, как в нее попадают частицы света и «выбивают» из нее электроны. По своей химической структуре FDT представляет собой небольшую молекулу ароматического углеводорода, похожую по форме на бабочку с крупными крыльями.

Кончики крыльев этой «бабочки» цепляются за поверхность пленки из перовскита, а ее нижняя часть взаимодействует с атомами йода, служащими источником «дырок» и электронов, и заставляют их быстрее возвращаться в рабочее положение после того, как свет выбьет очередной электрон из кристалла перовскита.

Благодаря ее необычным свойствам, солнечная батарея, покрытая тонким слоем FDT, способна достичь рекордного на сегодняшний день показателя КПД – свыше 20,2%, что чуть выше, чем у солнечных батарей на базе более дорогих «переносчиков дырок». Как надеются ученые, их открытие приблизит нас к появлению действительно эффективных «зеленых» источников энергии. опубликовано