Параметрические измерительные преобразователи. Функциональные преобразователи: измерительные, параметрические, генераторные

Основными элементами большинства применяемых средств измерений являются первичные измерительные преобразователи, назначение которых - преобразование измеряемой физической величины (входная величина) в сигнал измерительной информации (выходная величина), как правило, электрический, удобный для дальнейшей обработки.

Первичные преобразователи подразделяются на параметрические и генераторные. В параметрических преобразователях выходная величина представляет собой изменение какого-либо параметра электрической цепи {сопротивление, индуктивность, емкость и т.д.), в генераторных выходная величина - ЭДС, электрический ток или заряд, возникающие вследствие энергии измеряемой величины.

Существует большой класс измерительных преобразователей, у которых входными величинами являются давление, сила или крутящий момент. Как правило, в этих преобразователях входная величина воздействует на упругий элемент и вызывает его деформацию, которая затем преобразуется или в сигнал, воспринимаемый наблюдателями (механические показывающие приборы), или в электрический сигнал.

В значительной степени инерционные свойства преобразователя определяются частотой собственных колебаний упругого элемента: чем она выше, тем менее инерционным является преобразователь. Максимальное значение этих частот при использовании конструкционных сплавов составляет 50...100 кГц. Для изготовления упругих элементов особо точных преобразователей применяются кристаллические материалы (кварц, сапфир, кремний).

Резистивные преобразователи - это параметрические преобразователи, выходной величиной которых является изменение электрического сопротивления, которое может вызываться воздействием разнообразных по физической природе величин - механических, тепловых, световых, магнитных и др.

Потенциометрический преобразователь представляет собой реостат, движок которого перемешается под воздействием измеряемой величины (входная величина). Выходной величиной является сопротивление.



Потенциометрические преобразователи применяются для измерения положения регулирующих органов (линейных и угловых), в уровнемерах, в датчиках (например, давления) для измерения деформации упругого чувствительного элемента. Достоинство потенциометрических преобразователей - большой выходной сигнал, стабильность метрологических характеристик, высокая точность, незначительная температурная погрешность. Основной недостаток - узкий частотный диапазон (несколько десятков герц).

Работа тензорезисторов основана на изменении сопротивления проводников и полупроводников при их механической деформации (тензоэффект). Проволочный (или фольговый) тензорезистор представляет собой зигзагообразную изогнутую тонкую проволоку диаметром 0,02...0,05 мм или ленту из фольги толщиной 4...12 мкм (решетка), которая наклеивается на подложку из электроизоляционного материала. К концам решетки присоединяются выводные медные проводники. Преобразователи, будучи приклеенными к детали, воспринимают деформацию ее поверхностного слоя.

При измерениях деформаций и напряжений в деталях и конструкциях, как правило, отсутствует возможность градуировки измерительных каналов и погрешность измерений составляет 2...10 %. В случае применения тензорезисторов в первичных измерительных преобразователях погрешность может быть снижена до 0.5...1 % путем градуировки. Основной недостаток тензорезисторов данного типа - малый выходной сигнал.

Для измерений малых деформаций упругих чувствительных элементов измерительных преобразователей используются полупроводниковые тензорезисторы, выращенные непосредственно на упругом элементе, выполненном из кремния или сапфира.

При измерениях динамических деформаций с частотой до 5 кГц должны применяться проволочные или фольговые тензорезисторы с базой не более 10 мм, причем максимальная деформация для них не должна превышать 0,1 % (0,02 % для полупроводниковых).

Действие пьезоэлектрических преобразователей основано на возникновении электрических зарядов при деформации кристалла (прямой пьезоэффект).

Пьезоэлектрические преобразователи обеспечивают возможность измерения быстропеременных величин (собственная частота преобразователей достигает 200 кГц), отличаются высокой надежностью и имеют малые габаритные размеры и массу. Основной недостаток - трудность при измерении медленно изменяющихся величин и при проведении статической градуировки из-за утечек электричества с поверхности кристалла.

Электростатический преобразователь схематично можно представить в виде двух электродов (пластин) площадью F, параллельно расположенных на расстоянии d в среде с диэлектрической проницаемостью е.

Обычно эти преобразователи устроены таким образом, что их выходной величиной является изменение емкости (в этом случае они называются емкостными), а входными величинами могут быть механические перемещения, изменяющие зазор d или площадь F, или изменение диэлектрической проницаемости среды e вследствие изменения ее температуры, химического состава и т.п.

Кроме емкости, в качестве выходной величины электростатических преобразователей используется ЭДС. генерируемая при взаимном перемещении электродов, находящихся в электрическим поле (генераторный режим). Например, в генераторном режиме работают конденсаторные микрофоны, преобразующие энергию акустических колебаний в электрическую.

Достоинством электростатических преобразователей является отсутствие шумов и самонагрева. Однако с целью защиты от наводок соединительные линии и сами преобразователи должны тщательно экранироваться.

У индуктивных преобразователей выходной величиной является изменение индуктивности, а входными величинами могут быть перемещения отдельных частей преобразователя, приводящие к изменению сопротивления магнитной цепи, взаимоиндукции между контурами и т.д.

Достоинствами преобразователей являются: линейность характеристики, малая зависимость выходного сигнала от внешних воздействий, ударов и вибраций; высокая чувствительность. Недостатки - малый выходной сигнал и необходимость в питающем напряжении повышенной частоты.

Принцип действия вибрационно-частотных преобразователей основан на изменении частоты собственных колебаний струны или тонкой перемычки при изменении ее натяжения.

Входной величиной преобразователя является механическое усилие (или величины, преобразуемые в усилие. - давление, крутящий момент и др.). которое воспринимается упругим элементом, связанным с перемычкой.

Применение вибрационно-частотных преобразователей возможно при измерении постоянных или медленно изменяющихся во времени величин (частота не более 100...150 Гц). Они отличаются высокой точностью, а частотный сигнал - повышенной помехоустойчивостью.

В оптоэлектрических преобразователях используются закономерности распространения и взаимодействия с веществом электромагнитных волн оптического диапазона.

Основным элементом преобразователей являются приемники излучения. Простейшие из них - тепловые преобразователи - предназначены для преобразования всей падающей на них энергии излучения в температуру (интегральный преобразователь).

В качестве приемников излучения используются также различные фотоэлектрические преобразователи, в которых используется явление фотоэффекта. Фотоэлектрические преобразователи являются селективными, т.е. они обладают высокой чувствительностью в сравнительно узком диапазоне длин волн. Например, внешний фотоэффект (испускание электронов под действием света) используется в вакуумных и газонаполненных фотоэлементах и фотоумножителях.

Вакуумный фотоэлемент представляет собой стеклянный баллон, на внутренней поверхности которого нанесен слой фоточувствительного материала, образующий катод. Анод выполняется в виде кольца или сетки из металлической проволоки. При освещении катода возникает ток фотоэмиссии. Выходные токи этих элементов не превышают нескольких микроампер. В газонаполненных фотоэлементах (для заполнения применяются инертные газы Ne, Аr, Кr, Хе) выходной ток увеличивается в 5...7 раз из-за ионизации газа фотоэлектронами.

В фотоумножителях усиление первичного фототока происходит вследствие вторичной электронной эмиссии - "выбивания" электронов из вторичных катодов (эмиттеров), установленных между катодом и анодом. Общий коэффициент усиления в многокаскадных фотоумножителях может достигать сотен тысяч, а выходной ток - 1 мА. Фотоумножители и вакуумные, элементы могут использоваться при измерениях быстро изменяющихся величин, так как явление фотоэмиссии практически безынерционно.

Измерение давлений

Для измерения полного или статического давления в поток помешают специальные приемники с приемными отверстиями, которые трубками небольшого диаметра (пневмомагистралями) соединяются с соответствующими первичными преобразователями или измерительными приборами.

Простейшим приемником полного давления является цилиндрическая трубка с перпендикулярно срезанным торцом, изогнутая под прямым углом и ориентированная навстречу потоку. Для уменьшения чувствительности приемника к направлению потока (например, при измерениях в потоках с небольшой закруткой) применяются специальные конструкции приемников. Например, приемники полного давления с протоком (рис. 3.3) характеризуются погрешностью измерения не более 1 % при углах скоса до 45° при числе М<0,8.

При измерении статических давлений вблизи стенок каналов приемные отверстия диаметром 0,5...1 мм выполняются непосредственно в стенках (дренажные отверстия). В месте дренажа не должно быть неровностей, а кромки отверстий не должны иметь заусенцев. Этот вид измерений весьма распространен при исследовании течений в трубах и каналах в камерах сгорания, диффузорах и соплах.



Рис. 3.3. Схема приемника полного давления:

Рис. 3.4. Схема приемника статического давления:

а - клиновидный;

б - дисковый;

в - Г-образный для измерений при М£1,5

Для измерений статических давлений в потоке применяются клиновидные и дисковые приемники, а также приемники в виде трубок Г-образной формы (рис. 3.4) с приемными отверстиями, расположенными на боковой поверхности. Указанные приемники хорошо работают при дозвуковых и небольших сверхзвуковых скоростях.

Для исследования распределения давлений в поперечных сечениях каналов получили распространение гребенки полного и статического давлений, содержащие несколько приемников, или комбинированные гребенки, имеющие приемник как полного, так и статического давлений. При измерениях в потоках со сложной структурой течения (камеры сгорания, межлопаточные каналы турбомашин) применяются ориентируемые и неориентируемые приемники давления, позволяющие определить значения полного и статического давлений и направление вектора скорости. Первые из них предназначены для измерений в двумерных потоках, и их конструкция позволяет путем поворота устанавливать приемник в определенном положении относительно вектора местной скорости потока.

Неориентируемые приемники снабжены несколькими приемными отверстиями (5...7), которые выполнены в стенках цилиндра или сферы небольшого диаметра (3...10 мм) или располагаются в концах срезанных под определенными углами трубок (диаметр 0,5...2 мм), объединенных в единый конструктивный узел (рис. 3.5). При обтекании приемника потоком вокруг него формируется определенное распределение давлений. Используя измеренные с помощью приемных отверстий значения давлений и результаты предварительной градуировки приемника в аэродинамической трубе, можно определить значения полного и статического давлений и местное направление скорости потока.

При сверхзвуковых скоростях течений перед приемниками давлений возникают скачки уплотнения, и это необходимо учитывать при обработке результатов измерений. Например, по измеренным значениям статического давления в потоке р и полного за прямым скачком уплотнения р*" можно определить с помощью формулы Релея число М, а затем и значение полного давления в потоке:

При испытаниях двигателей и их элементов для измерения давлений применяются различные приборы (стрелочные деформационные, жидкостные, групповые регистрирующие манометры), позволяющие оператору контролировать режимы работы экспериментальных объектов. В информационно-измерительных системах используются разнообразные первичные преобразователи. Как правило, давление, точнее разность давлений (например, между измеряемым и атмосферным, между полным и статическим и т.д.), воздействует на упругий чувствительный элемент (мембрану), деформация которого преобразуется в электрический сигнал. Наиболее часто для этого применяются индуктивные и тензочувствительные преобразователи при измерении постоянных и медленно изменяющихся давлений и пьезокристаллические и индуктивные преобразователи при измерении переменных давлений.

Рис. 3.5. Схема пятиканального приемника давлений:

С x , С y , С z - составляющие вектора скорости; р i - измеряемые значения давления

В качестве примера на рис. 3.6 представлена схема преобразователя «Сапфир-22ДД». Преобразователи этого типа выпускаются в нескольких модификациях, предназначенных для измерения избыточного давления, разности давлений, вакуума, абсолютного давления, избыточного давления и вакуума в различных диапазонах. Упругий чувствительный элемент представляет собой металлическую мембрану 2, к которой сверху припаяна сапфировая мембрана с напыленными кремниевыми тензорезисторами. Измеряемая разность давлений воздействует на блок, состоящий из двух диафрагм 5. При смещении их центра усилие с помощью тяги 4 передается на рычаг 3, что приводит к деформации мембраны 2 с тензорезисторами. Электрический сигнал от тензорезисторов поступает в электронный блок 4, где преобразуется в унифицированный сигнал - постоянный ток 0...5 или 0...20 мА. Электрическое питание преобразователя осуществляется от источника постоянного тока напряжением 36 В.


При измерениях переменных (например, пульсирующих) давлений целесообразно максимальное приближение первичного преобразователя к месту измерения, так как наличие пневмомагистрали вносит существенные изменения в амплитудно-частотную характеристику системы измерений. Предельным в этом смысле является бездренажный метод, при котором миниатюрные преобразователи давления крепятся заподлицо с поверхностью, обтекаемой потоком (стенкой канала, лопаткой компрессора и т.д.). Известны преобразователи, имеющие высоту 1,6 мм и диаметр мембраны 5 мм. Используются также системы с приемниками давления и волноводами (l~100 мм) (метод вынесенных приемников давления), в которых для улучшения динамических

характеристик используются корректирующие акустические и электрические звенья.

При большом числе точек измерения в измерительных системах могут применяться специальные быстродействующие пневмокоммутаторы, которые обеспечивают поочередное подключение к одному преобразователю нескольких десятков точек измерения.

Для обеспечения высокой точности необходимо в рабочих условиях периодически контролировать средства измерения давления с помощью автоматических задатчиков.


Измерение температур

Для измерения температур применяются разнообразные средства измерений. Термоэлектрический термометр (термопара) представляет собой два проводника из различных материалов, соединенные (сваренные или спаянные) между собой концами (спаи). Если температуры спаев будут различны, то в цепи потечет ток под действием термоэлектродвижущей силы, значение которой зависит от материала проводников и от температур спаев. При измерениях, как правило, один из спаев термостатируется (для этого применяется тающий лед). Тогда ЭДС термопары будет однозначно связана с температурой «горячего» спая.

В термоэлектрический контур можно включить разнородные проводники. При этом результирующая ЭДС не изменится, если все места соединений будут находиться при одинаковой температуре. На этом свойстве основано применение так называемых удлинительных проводов (рис. 3.7), которые присоединяются к термоэлектродам ограниченной длины, и таким образом достигается экономия дорогостоящих материалов. При этом необходимо обеспечить равенство температур в местах присоединения удлинительных проводов (Т с) и термоэлектрическую идентичность их основной термопаре в диапазоне возможного изменения температур Т с и Т 0 (обычно не более 0...200°С). При практическом использовании термопар возможны случаи, когда температура Т 0 отлична от 0°С. Тогда для учета этого обстоятельства ЭДС термопары следует определить как E=Е изм +DE(T 0) и по градуировочной зависимости найти значение температуры. Здесь Е изм - измеренное значение ЭДС; DE(T 0) – значение ЭДС, соответствующее величине T 0 и определенное по градуировочной завиcимости. Градуировочные зависимости для термопар получают при температуре «холодных» спаев Т 0 , равной 0°С. Эти зависимости несколько отличаются от линейных. В качестве примера на рис. 3.8 приведена градуировочная зависимость для термопары платинородий-платина.

Некоторые характеристики наиболее распространенных термопар даны в табл. 3.1.

На практике наиболее распространены термопары с диаметром электродов 0,2...0,5 мм. Электроизоляция электродов достигается путем обмотки их асбестовой или кремнеземной нитью последующей пропиткой термостойким лаком, помещением термоэлектродов в керамические трубки или нанизыванием на них кусочков этих трубок («бусы»). Получили распространение термопары кабельного типа, представляющие собой два термоэлектрода, помещенные в тонкостенную оболочку, изготовленную из жаропрочной стали. Для изоляции термоэлектродов внутренняя полость оболочки набивается порошком MgO или Al 2 О 3 . Наружный диаметр оболочки - 0,5...6 мм.

Таблица 3.1

Для правильного измерения температуры конструктивных элементов термопары должны заделываться таким образом, чтобы горячий спай и термоэлектроды вблизи него не выступали над поверхностью и чтобы условия теплоотдачи от термометрируемой поверхности не нарушались из-за установки термопары. Для уменьшения погрешности измерений вследствие оттока (или притока) тепла от горячего спая по термоэлектродам за счет теплопроводности термоэлектроды на некотором расстоянии вблизи спая (7...10 мм) должны прокладываться примерно по изотермам. Схема заделки термопары, удовлетворяющей указанным требованиям, приведена на рис. 3.9. В детали выполнена канавка глубиной 0,7 мм, в которую укладываются спай и прилегающие к нему термоэлектроды; спай приваривается к поверхности контактной сваркой; канавка закрывается фольгой толщиной 0,2...0,3 мм.

Вывод термоэлектродов из внутренних полостей двигателя или его узлов осуществляется через штуцера. При этом необходимо следить за тем, чтобы термоэлектроды не слишком сильно нарушали структуру течения и не повреждалась их изоляция из-за трения друг о друга и об острые кромки конструкции.

При измерении температур вращающихся элементов показания термопар выводятся с помощью щеточных или ртутных токосъемников. Разрабатываются также бесконтактные токосъемники.

Схемы термопар, применяемых для измерения температуры потока газа, приведены на рис. 3.10. Горячий спай 1 представляет собой сферу диаметром d 0 (термоэлектроды могут также свариваться встык); термоэлектроды 2 вблизи спая закрепляются в изолирующей двухканальной керамической трубке 3, а затем выводятся из корпуса 4. На рисунке корпус 4 показан водоохлаждаемым (охлаждение необходимо при измерениях температур, превышающих 1300...1500 К), подвод и отвод охлаждающей воды осуществляются через штуцера 5.

При высоких значениях температуры газа возникают методические погрешности, обусловленные отводом тепла от спая вследствие теплопроводности по термоэлектродам к корпусу термопары и излучением в окружающую среду. Потери тепла из-за теплопроводности практически полностью можно устранить, обеспечив вылет изолирующей трубки, равный 3...5 ее диаметрам.

Для уменьшения отвода тепла излучением применяется экранирование термопар (рис. 3.10, б, в). Этим обеспечивается также защита спая от повреждений, а торможение потока внутри экрана способствует повышению коэффициента восстановления температуры при измерениях в высокоскоростных потоках.

Разработан также метод определения температуры газа по показаниям двух термопар, имеющих термоэлектроды различного


Рис. 3.9. Схема заделки термопары при измерении температуры элементов камер сгорания

Рис. 3.10. Схемы термопар для измерения температуры газа:

а - термопара с открытым спаем: б, в - экранированные термопары; г - двухспайная термопара; 1 - спай: 2 – термоэлектроды; 3 - керамическая трубка; 4 - корпус; 5 - штуцера для подвода и отвода воды


диаметра (рис. 3.10, г), позволяющий учесть отвод тепла излучением.

От конструктивного выполнения зависит инерционность термопар. Так, постоянная времени изменяется от 1...2 с для термопар с открытым спаем, до 3...5 с для экранированных термопар.

При исследовании полей температур (например, за турбиной, камерой сгорания и т.д.) применяются гребенки термопар, причем в ряде случаев они устанавливаются во вращающихся турелях, что позволяет достаточно подробно определять распределение температур во всем поперечном сечении.

Действие термометра сопротивления основано на изменении сопротивления проводника при изменении температуры. В качестве электросопротивления применяется проволока диаметром 0,05... 0,1 мм, выполненная из меди (t=-50...+150°С), никеля (t=-50...200°С) или платины (t=-200...500°С).

Проволока наматывается на каркас и помещается в чехол. Термометры сопротивления обладают высокой точностью и надежностью, однако они характеризуются большой инерционностью и не пригодны для измерения локальных температур. Термометры сопротивления применяются для измерений температуры воздуха на входе в двигатель, температур топлив, масел и т.д.

В жидкостных термометрах используется свойство теплового расширения жидкости. В качестве рабочих жидкостей применяются ртуть (t=-30...+700°C), спирт (t=-100...+75°C) и др. Жидкостные термометры используются при измерениях температуры жидких и газообразных сред в лабораторных условиях, а также при градуировке других приборов.

Оптические методы измерения температуры основаны на закономерностях теплового излучения нагретых тел. На практике могут быть реализованы три типа пирометров: яркостные пирометры, работа которых основана на изменении теплового излучения тела с температурой при некоторой фиксированной длине волн; цветовые пирометры, использующие изменение с температурой распределения энергии в пределах некоторого участка спектра излучения; радиационные пирометры, основанные на зависимости от температуры общего количества излучаемой телом энергии.

В настоящее время при испытаниях двигателей для измерений температур элементов конструкции нашли применение яркостные пирометры, созданные на базе фотоэлектрических приемников лучистой энергии. В качестве примера схема установки пирометра при термометрировании лопаток турбины на работающем двигателе представлена на рис. 32.11. С помощью линзы 2 «поле зрения» первичного преобразователя ограничено небольшим (5...6 мм) участком. Пирометр «осматривает» кромку и часть спинки каждой лопатки. Защитное стекло 1, выполненное из сапфира, предохраняет линзу от загрязнения и перегрева. Сигнал по световоду 3 передается к фотодетектору. Благодаря малой инерционности пирометр позволяет контролировать температуру каждой лопатки.

Для измерения температур конструктивных элементов двигателя могут применяться цветовые индикаторы температуры (термокраски или термолаки) - сложные вещества, которые при достижении определенной температуры (температура перехода) резко изменяют свой цвет из-за химического взаимодействия компонентов или происходящих в них фазовых переходов.

Рис. 3.11. Схема установки пирометра на двигателе:

(а) (1 - подвод обдувочного воздуха; 2 - первичный преобразователь) и схема первичного преобразователя

(б) (1 - защитное стекло; 2 - линза; 3 - световод)

Термокраски и термолаки, будучи нанесенными на твердую поверхность, после высыхания затвердевают и образуют тонкую пленку, которая способна изменять свой цвет при температуре перехода. Например, термокраска ТП-560 белого цвета при достижении t=560 °С становится бесцветной.

С помощью термоиндикаторов можно обнаружить зоны перегрева в элементах двигателя, в том числе и в труднодоступных местах. Трудоемкость измерений невелика. Однако их применение ограничено, так как не всегда можно установить, на каком режиме была достигнута максимальная температура. Кроме того, окраска термоиндикатора зависит от времени воздействия температуры. Поэтому термоиндикаторы, как правило, не могут заменить других методов измерений (например, с помощью термопар), но позволяют получить дополнительную информацию о тепловом состоянии исследуемого объекта.

Работа измерительных преобразователей протекает в сложных условиях, так как объект измерения - это, как правило, сложный, многогранный процесс, характеризующийся множеством параметров, каждый из которых действует на измерительный преобразователь совместно с остальными параметрами. Нас же интересует только один параметр, который называется измеряемой величиной, а все остальные параметры процесса считаются помехами. Поэтому у каждого измерительного преобразователя устанавливается его естественная входная величина, которая лучше всего воспринимается им на фоне помех. Подобным образом можно выделить естественную выходную величину измерительного преобразователя.

Преобразователи неэлектрических величин в электрические с точки зрения вида сигнала на его выходе могут быть подразделены на генераторные, выдающие заряд, напряжение или ток (выходная величина Е = F (X) или I = F(X) и внутреннее сопротивление ZBH = const), и параметрические с выходным сопротивлением, индуктивностью или емкостью, изменяющимися в соответствии с изменением входной величины (ЭДС Е = 0 и выходная величина в виде изменения R, L или С в функции X).

Различие между генераторными и параметрическими преобразователями обусловлено их эквивалентными электрическими схемами, отражающими фундаментальные отличия в природе используемых в преобразователях физических явлений. Генераторный преобразователь является источником непосредственно выдаваемого электрического сигнала, а измерение изменений параметров параметрического преобразователя производится косвенно, по изменению тока или напряжения в результате его обязательного включения в схему с внешним источником питания. Электрическая схема, непосредственно связанная с параметрическим преобразователем, формирует его сигнал. Таким образом, совокупность параметрического преобразователя и электрической схемы является источником электрического сигнала.


По физическому явлению, положенному в основу работы, и типу входной физической величины генераторные и параметрические преобразователи делятся на ряд разновидностей (рисунок 2.3):

Генераторные - на пьезоэлектрические,

Термоэлектрические и т. п.;

Резистивные - на контактные,

Реостатные и т. д.;

Электромагнитные - на индуктивные,

Трансформаторные и т. д.

По виду модуляции все ИП делятся на две большие группы: амплитудные и частотные, временные, фазовые. Последние три разновидности имеют очень много общего и поэтому объединены в одну группу.

Рис. 2.3. Классификация измерительных преобразователей неэлектрических величин в электрические.

2. По характеру преобразования входные величины:

Линейные;

Нелинейные.

3. По принципу действия первичного измерительного преобразователя (ПИП) делятся на:

Генераторные;

Параметрические.

Выходным сигналом генераторных ПИП является ЭДС, напряжение, ток и электрический заряд, функционально связанные с измеряемой величиной, например ЭДС термопары.

В параметрических ПИП измеряемая величина вызывает пропорциональное ей изменение параметров электрической цепи: R, L, C.

К генераторным относятся:

Индукционные;

Пьезоэлектрические;

Некоторые разновидности электрохимических.

Резистивные ИП - преобразуют измеряемую величину в сопротивление.

Электромагнитные ИП преобразуют в изменение индуктивности или взаимоиндукцию.

Емкостные ИП – преобразуют в изменение ёмкости.

Пьезоэлектрические ИП – преобразуют динамическое усилие в электрический заряд.

Гальваномагнитные ИП – основаны на эффекте Холла преобразуют действующее магнитное поле в ЭДС.

Тепловые ИП - измеряемую температуру преобразуют в величину термосопротивления или ЭДС.

Оптоэлектронные ИП – преобразуют оптические сигналы в электрические.

Для датчиков основными характеристиками являются:

Диапазон рабочих температур и погрешность в этом диапазоне;

Обобщенные входные и выходные сопротивления;

Частотная характеристика.

В промышленном применении погрешность датчиков, используемых в процессах регулирования, должна быть не более 1–2%. А для задач контроля – 2 – 3%.

2.1.3. Схемы включения первичных измерительных преобразователей

Первичные измерительные преобразователи бывают:

Параметрические;

Генераторные.

Схемы включения параметрических первичных измерительных преобразователей подразделяют на:

Последовательное включение:

Дифференциальное включение:

С одним первичным измерительным преобразователем;

С двумя первичными измерительными преобразователем;

Мостовые схемы включения:

Симметричный неуравновешенный мост с одним активным плечом;

Симметричный неуравновешенный мост с двумя активными плечами;

Симметричный неуравновешенный мост с четырьмя активными плечами.

Схемы включения генераторных измерительных преобразователей подразделяются на:


Последовательные;

Дифференциальные;

Компенсационные.

Генераторные не нуждаются в источнике энергии, а параметрические нуждаются. Очень часто генераторные можно представить как источник ЭДС, а параметрические можно представить как активный или реактивный резистор, сопротивление которого меняется с изменением измеряемой величины.

Последовательное и дифференциальное включение может применяться как к параметрическим, так и к генераторным ИП. Компенсационная схема – к генераторным. Мостовая – к параметрическим.

2.1.3.1. Схемы последовательного включения параметрических измерительных преобразователей

Последовательное включение одного параметрического измерительного преобразователя (рис.2.4):

Рис. 2.4. Последовательное включение одного параметрического ИП.

https://pandia.ru/text/80/219/images/image012_106.gif" width="137" height="45 src=">;

https://pandia.ru/text/80/219/images/image014_89.gif" width="247" height="65 src=">;

https://pandia.ru/text/80/219/images/image016_83.gif" width="116 height=41" height="41"> - чувствительность по току;

- чувствительность по напряжению;

Чувствительность по мощности;

Рис. 2.5. Выходные характеристики последовательно включенного ИП:

а – реальная; б – идеальная.

Последовательное включение двух параметрических измерительных преобразователей (рис.2.6).

Рис.2.6. Последовательное включение двух параметрических ИП.

https://pandia.ru/text/80/219/images/image022_71.gif" width="88" height="24 src=">;

Электроизмерительные приборы получили широкое применение для измерений неэлектрических величин. Это стало возможным благодаря применению специальных преобразователей (Пр).

Выходные сигналы таких преобразователей передаются в виде параметров цепи или ЭДС (заряда), связанной функциональной зависимостью с входным сигналом. Первые называются параметрическими, вторые – генераторными .

Из параметрических преобразователей наибольшее распространение получили реостатные, тензочувствительные, термочувствительные, электролитические, ионизационные, индуктивные и емкостные устройства.


Реостатные преобразователи представляют собой изолированный остов, на который намотан проводник и перемещающаяся вдоль витков щетка. Их выходным параметром служит сопротивление цепи.

Измеряемой величиной Пр может быть перемещение щетки по прямой или по окружности. Усовершенствовав воспринимающую систему, Пр можно применять для определения давления или массы, под действием которых будет перемещаться ползунок.

Для обмотки реостата применяют материалы, сопротивление которых мало зависит от внешних факторов (температура, давление, влажность и т. д.). Такими материалами могут быть нихром, фехраль, константан или манганин. Изменяя форму и сечение остова (соответственно меняется и длина одного витка) можно добиться нелинейной зависимости сопротивления цепи от перемещения ползунка.

Достоинством реостатных преобразователей можно назвать простоту их конструкции. Однако невозможно точно определить перемещение, если выходное сопротивление при этом изменяется в пределах одного витка. Это является главным недостатком таких Пр, и характеризует их погрешность.


Тензочувствительные преобразователи (ТЧПр) . Работа их основана на изменении активного сопротивления проводника под воздействием давления или механической деформации. Такое явление называется тензоэффектом.

Входным сигналом для ТЧПр может быть растяжение, сжатие или другой вид деформации деталей оборудования, металлических конструкций, выходным сигнал служит изменение сопротивления преобразователя.

Тензочувствительные Пр представляют собой тонкую подложку, выполненную из бумаги или пленки и наклеенную на нее проволоку, очень малого сечения. В качестве воспринимающего элемента обычно используют константановую проволоку, имеющую независимое от температуры сопротивление, диаметром 0,02-0,05 мм. Также применяют фольговые ТЧПр и пленочные тензорезисторы.

ТЧ преобразователь наклеивают на измеряемую деталь, таким образом, чтобы ось линейного расширения детали совпадала с продольной осью ТЧП. При расширении измеряемого объекта, увеличивается длина ТЧП, соответственно его сопротивление изменяется.

Достоинством таких приборов является линейность, простота конструкции и установки. К недостаткам можно отнести невысокую чувствительность.

Термочувствительные преобразователи (ТРПр) . В качестве основных элементов таких устройств применяют терморезисторы, термодиоды, термотранзисторы и т. п. Термоэлемент включается в электрическую цепь, таким образом, что через него проходит ток цепи, и воздействует температура измеряемого элемента.

С их помощью могут быть измерены температура, вязкость, теплопроводность, скорость движения и прочие параметры среды, в которой находится элемент.

Для измерений в диапазоне температур -260°C до +1100°C применяют платиновые терморезисторы, в диапазоне -200°C до +200°C – медные. В диапазоне температур -80°C до +150°C, когда требуется особая точность, применяют термодиоды и термотранзисторы.

ТРПр по режиму работы разделяют на перегревные и без предварительного нагрева. Приборы без предварительного нагрева применяют только для измерения температуры среды, так как протекающий в них ток не влияет на их нагрев. По сопротивлению элемента достаточно точно определяют температуру среды.

Режим работы другого вида термопреобразователей связан с их предварительным разогревом до заданной величины. Затем их помещают в измеряемую среду, и следят за изменением его сопротивления.

По скорости изменения сопротивления можно судить насколько интенсивно происходит охлаждение или нагрев, а значит можно определить скорость движения измеряемого вещества, его вязкость и другие параметры.

Полупроводниковые ТРПр более чувствительны чем терморезисторы, поэтому их применяют в области точных измерений. Однако их существенным недостатком является узкий температурный диапазон и плохая воспроизводимость статической характеристики устройства.


Электролитические преобразователи (ЭЛП) . Применяют для определения концентрации растворов, так как электрическая проводимость растворов существенно зависит от степени концентрации солей в них.

ЭЛП представляют собой сосуд с двумя электродами. К электродам подается напряжение, таким образом, электрическая цепь замыкается через слой электролита. Такие преобразователи применяют на переменном токе, так как под действием постоянного тока, электролит диссоциирует на положительные и отрицательные ионы, что вносит погрешность в измерения.

Еще одним недостатком ЭЛП модно назвать зависимость проводимости электролита от температуры, что вынуждает поддерживать постоянную температуру с помощью холодильных или нагревательных установок.

Индуктивные и емкостные преобразователи . Как следует из названия, выходными параметрами таких устройствй являются индуктивность и емкость. Измеряемой величиной простых индуктивных Пр может быть перемещение от 10 до 15 мм, для индуктивных трансформаторных Пр с незамкнутой системой это значение может быть увеличено до 100 мм. Емкостные Пр применяют для измерения перемещений порядка 1 мм.

Индуктивные Пр представляют собой две катушки индуктивности, размещенные на незамкнутом сердечнике. На взаимную индуктивность катушек влияют такие параметры как: длина воздушного зазора незамкнутого участка, площадь поперечного сечения воздушного зазора, магнитная проницаемость воздушного зазора.

Таким образом, измерением взаимной индуктивности катушек можно определить насколько изменились вышеприведенные параметры. А измениться они могут при перемещении в воздушном промежутке пластины диэлектрика. На этом основан принцип работы индуктивных Пр.

Принцип работы емкостных Пр основан на изменении емкости конденсатора при уменьшении активной площади обкладок, изменении расстояния между обкладками конденсатора и изменении диэлектрической проницаемости межобкладочного пространства.

Емкостные преобразователи имеют более высокую чувствительность к изменению входных параметров. Емкостный Пр в состоянии зафиксировать изменение емкости даже при перемещении на тысячные доли миллиметра.

Ионизационные преобразователи . Принцип работы приборовя основан на явлении ионизации газа и других сред под воздействием ионизирующих излучений, в качестве которых могут применяться ионизирующие α-, β- и γ-излучения радиоактивных веществ, или рентгеновские излучения.

Если камеру с газом подвергнуть излучению, то через электроды потечет электрический ток. Величина этого тока будет зависеть от состава газа, размеров электродов, расстояния между электродами и приложенного напряжения.

Измеряя электрический ток в цепи, при известном составе среды, расстоянии между электродами, приложенном напряжении модно определить размер электродов, или наоборот другие параметры. Их применяют для измерения размеров деталей, или составов газа и пр.

Основным преимуществом ионизирующих Пр является возможность бесконтактного измерения, в агрессивных средах, под повышенным давлением или температурой. Недостатком таких Пр является необходимость биологической защиты персонала от воздействия излучений.


Термометры сопротивления. Термометры сопротивления как и термопары, предназначены для измерения температуры газообразных, твердых и жидких тел, а также температуры поверхности. Принцип действия термометров основан на использовании свойства металлов и полупроводников изменять свое электрическое сопротивление с температурой. Для проводников из чистых металлов эта зависимость в области температур от –200 °С до 0 °С имеет вид:

R t =R 0 ,

а в области температур от 0 °С до 630 °С

R t =R 0 ,

где R t , R 0 - сопротивление проводника при температуре t и 0 °С; А, В, С - коэффициенты; t - температура, °С.

В диапазоне температур от 0 °С до 180 °С зависимость сопротивления проводника от температуры описывается приближенной формулой

R t =R 0 ,

где α - температурный коэффициент сопротивления материала проводника (ТКС).

Для проводников из чистого металла α≈ 6-10 -3 ...4-10 -3 град -1 .

Измерение температуры термометром сопротивления сводится к измерению его сопротивления R t , с последующим переходом к температуре по формулам или градуировочным таблицам.

Различают проволочные и полупроводниковые термометры сопротивления. Проволочный термометр сопротивления представляет собой тонкую проволоку из чистого металла, закрепленную на каркасе из температуростойкого материала (чувствительный элемент), помещенную в защитную арматуру (рис. 5.4).

Рис. 5.4. Чувствительный элемент термометра сопротивления

Выводы от чувствительного элемента подведены к головке термометра. Выбор для изготовления термометров сопротивления проволок из чистых металлов, а не сплавов, обусловлен тем, что ТКС чистых металлов больше, чем ТКС сплавов и, следовательно, термометры на основе чистых металлов обладают большей чувствительностью.

Промышленностью выпускаются платиновые, никелевые и медные термометры сопротивления. Для обеспечения взаимозаменяемости и единой градуировки термометров стандартизованы величины их сопротивления R 0 и ТКС.

Полупроводниковые термометры сопротивления (термисторы) представляют собой бусинки, диски или стержни из полупроводникового материала с выводами для подключения в измерительную цепь.

Промышленность серийно выпускает множество типов термисторов в различном конструктивном оформлении.

Размеры термисторов, как правило, малы - около нескольких миллиметров, а отдельные типы десятых долей миллиметра. Для предохранения от механических повреждений и воздействия среды термисторы защищаются покрытиями из стекла или эмали, а также металлическими чехлами.

Термисторы обычно имеют сопротивление от единиц до сотен килоом; их ТКС в рабочем диапазоне температур на порядок больше, чем у проволочных термометров. В качестве материалов для рабочего тела термисторов используют смеси оксидов никеля, марганца, меди, кобальта, которые смешивают со связующим веществом, придают ему требуемую форму и спекают при высокой температуре. Применяют термисторы для измерения температур в диапазоне от -100 до 300°С. Инерционность термисторов сравнительно невелика. К числу их недостатков следует отнести нелинейность температурной зависимости сопротивления, отсутствие взаимозаменяемости из-за большого разброса номинального сопротивления и ТКС, а также необратимое изменение сопротивления во времени.

Для измерения в области температур, близких к абсолютному нулю, применяются германиевые полупроводниковые термометры.

Измерение электрического сопротивления термометров производится с помощью мостов постоянного и переменного тока или компенсаторов. Особенностью термометрических измерений является ограничение измерительного тока с тем, чтобы исключить разогрев рабочего тела термометра. Для проволочных термометров сопротивления рекомендуется выбрать такой измерительный ток, чтобы мощность, рассеиваемая термометром, не превышала 20 ... 50 мВт. Допустимая рассеиваемая мощность в термисторах значительно меньше и ее рекомендуется определять экспериментально для каждого термистора.

Тензочувствительные преобразователи (тензорезисторы). В конструкторской практике часто необходимы измерения механических напряжений и деформаций в элементах конструкций. Наиболее распространенными преобразователями этих величин в электрический сигнал являются тензорезисторы. В основе работы тензорезисторов лежит свойство металлов и полупроводников изменять свое электрическое сопротивление под действием приложенных к ним сил. Простейшим тензорезистором может быть отрезок проволоки, жестко сцепленный с поверхностью деформируемой детали. Растяжение или сжатие детали вызывает пропорциональное растяжение или сжатие проволоки, в результате чего изменяется ее электрическое сопротивление. В пределах упругих деформаций относительное изменение сопротивления проволоки связано с ее относительным удлинением соотношением

ΔR/R=K Τ Δl/l,

где l, R - начальные длина и сопротивление проволоки; Δl , ΔR - приращение длины и сопротивления; K Τ - коэффициент тензочувствительности.

Величина коэффициента тензочувствительности зависит от свойств материала, из которого изготовлен тензорезистор, а также от способа крепления тензорезистора к изделию. Для металлических проволок из различных металлов K Τ = 1... 3,5.

Различают проволочные и полупроводниковые тензорезисторы. Для изготовления проволочных тензорезисторов применяются материалы, имеющие достаточно высокий коэффициент тензочувствительности и малый температурный коэффициент сопротивления. Наиболее употребительным материалом для изготовления проволочных тензорезисторов является константановая проволока диаметром 20 ... 30 мкм.

Конструктивно, проволочные тензорезисторы представляют собой решетку, состоящую из нескольких петель проволоки, наклеенных на тонкую бумажную (или иную) подложку (рис. 5.5). В зависимости от материала подложки тензорезисторы могут работать при температурах от -40 до +400 °С.

Рис. 5.5. Тензометр

Существуют конструкции тензорезисторов, прикрепляемых к поверхности деталей с помощью цементов, способные работать при температурах до 800 °С.

Основными характеристиками тензорезисторов являются номинальное сопротивление R, база l и коэффициент тензочувствительности K Τ . Промышленностью выпускается широкий ассортимент тензорезисторов с величиной базы от 5 до 30мм, номинальными сопротивлениями от 50 до 2000 Ом, с коэффициентом тензочувствительности 2±0,2.

Дальнейшим развитием проволочных тензорезисторов являются фольговые и пленочные тензорезисторы, чувствительным элементом которых являются решетка из полосок фольги или тончайшая металлическая пленка, наносимые на подложки на лаковой основе.

Тензорезисторы выполняются, на основе полупроводниковых материалов. Наиболее сильно тензоэффект выражен у германия, кремния и др. Основным отличием полупроводниковых тензорезисторов от проволочных является большое (до 50 %) изменение сопротивления при деформации благодаря большой величине коэффициента тензочувствительности.

Индуктивные преобразователи. Индуктивные преобразователи применяются для измерения перемещений, размеров, отклонений формы и расположения поверхностей. Преобразователь состоит из неподвижной катушки индуктивности с магнитопроводом и якоря, также являющегося частью магнитопровода, перемещающегося относительно катушки индуктивности. Для получения возможно большей индуктивности магнитопровод катушки и якорь выполняются из ферромагнитных материалов. При перемещении якоря (связанного, например, со щупом измерительного устройства) изменяется индуктивность катушки и, следовательно, изменяется ток, протекающий в обмотке. На рис. 5.6 приведены схемы индуктивных преобразователей с переменным воздушным зазором d (рис. 5.6а ) применяемых для измерения перемещения в пределах 0,01…10 мм; с переменной площадью воздушного зазора S δ (рис. 5.6б ), применяемых в диапазоне 5 … 20 мм.

Рис. 5.6. Индуктивные преобразователи перемещений

5.2. Операционные усилители

Операционный усилитель (ОУ) - это дифференциальный усилитель постоянного тока с очень большим коэффициентом усиления. Для усилителя напряжения передаточная функция (коэффициент усиления) определяется выражением

Для упрощения конструкторских расчетов предполагается, что идеальный ОУ имеет следующие характеристики.

1. Коэффициент усиления при разомкнутой петле обратной связи равен бесконечности.

2. Входное сопротивление R d равно бесконечности.

3. Выходное сопротивление R 0 = 0.

4. Ширина полосы пропускания равна бесконечности.

5. V 0 = 0 при V 1 = V 2 (отсутствует напряжение смещения нуля).

Последняя характеристика очень важна. Так как V 1 -V 2 = V 0 / А, то если V 0 имеет конечное значение, а коэффициент А бесконечно велик (типичное значение 100000) будем иметь

V 1 - V 2 = 0 и V 1 = V 2.

Поскольку входное сопротивление для дифференциального сигнала(V 1 - V 2)

также очень велико, то можно пренебречь током через R d .Эти два допущения существенно упрощают разработку схем на ОУ.

Правило1. При работе ОУ в линейной области на двух его входах действуют одинаковые напряжения.

Правило2. Входные токи для обоих входов ОУ равны нулю.

Рассмотрим базовые схемные блоки на ОУ. В большинстве этих схем ОУ используется в конфигурации с замкнутой петлей обратной связи.

5.2.1. Усилитель с единичным коэффициентом усиления

(повторитель напряжения)

Если в неинвертирующеи усилителе положить R i равным бесконечности, а R f равным нулю, то мы придем к схеме, изображенной на рис. 5.7.



Согласно правилу 1, на инвертирующем входе ОУ тоже действует входное напряжение V i , которое непосредственно передается на выход схемы. Следовательно, V 0 = V i , и выходное напряжение отслеживает (повторяет) входное напряжение. У многих аналого-цифровых преобразователей входное сопротивление зависит от значения аналогичного входного сигнала. С помощью повторителя напряжения обеспечивается постоянство входного сопротивления.

5.2.2. Сумматоры

Инвертирующий усилитель может суммировать несколько входных напряжений. Каждый вход сумматора соединяется с инвертирующим входом ОУ через взвешивающий резистор. Инвертирующий вход называется суммирующим узлом, поскольку здесь суммируются все входные токи и ток обратной связи. Базовая принципиальная схема суммирующего усилителя представлена на рис. 5.8.



Как и в обычном инвертирующем усилителе, напряжение на инвертирующем входе должно быть равно нулю, следовательно, равен нулю и ток, втекающий в ОУ. Таким образом,

i f = i 1 + i 2 + . . . + i n

Так как на инвертирующем входе действует нулевое напряжение, то после соответствующих подстановок, получаем

V 0 = -R f ( +. . . + ).

Резистор R f определяет общее усиление схемы. Сопротивления R 1, R 2, . . . R n задают значения весовых коэффициентов и входных сопротивлений соответ-ствующих каналов.

5.2.3. Интеграторы

Интегратор – это электронная схема, которая вырабатывает выходнойсигнал, пропорциональный интегралу (по времени) от входного сигнала.



На рис. 5.9 показана принципиальная схема простого аналогового интегратора.Один вывод интегратора присоединен к суммирующему узлу, а другой – к выходу интегратора. Следовательно, напряжение на конденсоторе одновре-менно является выходным напряжением. Выходной сигнал интегратора не удается описать простой алгебраической зависимостью, поскольку при фикси-рованном входном напряжении выходное напряжение изменяется со скорос-тью, определяемом параметрами V i ,R и C. Таким образом, для того, чтобы найти выходное напряжение, нужно знать длительность действия входного сигнала. Напряжение на первоначально разряженном конденсаторе

где i f – через конденсатор и t i - время интегрирования. Для положительного

Vi имеем i i = V i /R. Поскольку i f = i i , то с учетом инверсии сигнала получаем

Из этого соотношения следует, что V 0 определяется интегралом (с обратным знаком) от входного напряжения в интервале от 0 до t 1 , умноженным на масштабный коэффициент 1/RC. Напряжение V ic - это напряжение на конденсаторе в начальный момент времени (t = 0).

5.2.4. Дифференциаторы

Дифференциатор вырабатывает выходной сигнал, пропорциональный скорости изменения во времени входного сигнала. На рис. 5.10 показана принципиальная схема простого дифференциатора.



Ток через конденсатор .

Если производная положительна, ток i i течет в таком направлении, что формируется отрицательное выходное напряжение V 0.

Таким образом,

Этот метод дифференцирования сигнала кажется простым, но при его практической реализации возникают проблемы с обеспечением устойчивости схемы на высоких частотах. Не всякий ОУ пригоден для использования в дифференциаторе. Критерием выбора является быстродействие ОУ: нужно выбирать ОУ с высокой максимальной скоростью нарастания выходного напряжения и высоким значением произведения коэффициента усиления на ширину полосы. Хорошо работают в дифференциаторах быстродействующие ОУ на полевых транзисторах.

5.2.5. Компараторы

Компаратор – это электронная схема, которая сравнивает два входных напряжения и вырабатывает выходной сигнал, зависящий от состояния входов. Базовая принципиальная схема компаратора показана на рис. 5.11.


Как видим, здесь ОУ работает с разомкнутой петлей обратной связи. На один из его входов подается опорное напряжение, на другой – неизвестное (сравниваемое) напряжение. Выходной сигнал компаратора указывает: выше или ниже уровня опорного напряжения находится уровень неизвестного входного сигнала. В схеме на рис.5.11 опорное напряжение V r подается на неинвертирующий вход, а на инвертирующий вход поступает неизвестный сигнал V i .

При V i > V r на выходе компаратора устанавливается напряжение V 0 = - V r (отрицательное напряжение насыщения). В противоположном случае получаем V 0 = +V r .Можно поменять местами входы – это приведет к инверсии выходного сигнала.

5.3. Коммутация измерительных сигналов

В информационно-измерительной технике при реализации аналоговых измерительных преобразований часто приходится осуществлять электрические соединения между двумя и более точками измерительной схемы с целью вызвать необходимый переходный процесс, рассеять запасенную реактивным элементом энергию (например, разрядить конденсатор), подключить источник питания измерительной цепи, включить ячейку аналоговой памяти, взять выборку непрерывного процесса при дискретизации и т. д. Кроме того, многие измерительные средства осуществляют измерительные преобразования последовательно над большим числом электрических величин, распределенных в пространстве. Для реализации сказанного используются измерительные коммутаторы и измерительные ключи.

Измерительным коммутатором называется устройство, которое преобразует пространственно разнесенные аналоговые сигналы в сигналы, разделенные во времени, и наоборот.

Измерительные коммутаторы аналоговых сигналов характеризуются следующими параметрами:

динамическим диапазоном коммутируемых величин;

погрешностью коэффициента передачи;

быстродействием (частотой переключении или временем, необходимым для выполнения одной коммутационной операции);

числом коммутируемых сигналов;

предельным числом переключений (для коммутаторов с контактными измерительными ключами).

В зависимости от типа используемых в коммутаторе измерительных ключей различаются контактные и бесконтактные коммутаторы .

Измерительный ключ представляет собой двухполюсник с явно выраженной нелинейностью вольт-амперной характеристики. Переход ключа из одного состояния (закрытого) в другое (открытое) выполняется с помощью управляющего элемента.

5.4. Аналого-цифровое преобразование

Аналого-цифровое преобразование составляет неотъемлемую часть измерительной процедуры. В показывающих приборах эта операция соответствует считыванию числового результата экспериментатором. В цифровых и процессорных измерительных средствах аналого-цифровое преобразование выполняется автоматически, а результат либо поступает непосредственно на индикацию, либо вводится в процессор для выполнения последующих измерительных преобразований в числовой форме.

Методы аналого-цифрового преобразования в измерениях разработаны глубоко и основательно и сводятся к представлению мгновенных значений входного воздействия в фиксированные моменты времени соответствующей кодовой комбинацией (числом). Физическую основу аналого-цифрового преобразования составляет стробирование и сравнение с фиксированными опорными уровнями. Наибольшее распространение получили АЦП поразрядного кодирования, последовательного счета, следящего уравновешивания и некоторые другие. К вопросам методологии аналого-цифрового преобразования, которые связаны с тенденциями развития АЦП и цифровых измерений на ближайшие годы относятся, в частности:

Устранение неоднозначности считывания в наиболее быстродействующих АЦП сопоставления, получающих все большее распространение с развитием интегральной технологии;

Достижение устойчивости к сбоям и улучшение метрологических характеристик АЦП на основе избыточной системы счисления Фибоначчи;

Применение для аналого-цифрового преобразования метода статистических испытаний.

5.4.1 Цифроаналоговые и аналого-цифровые преобразователи

Цифроаналоговые (ЦАП) и аналого-цифровые преобразователи (АЦП) являются неотъемлемой частью автоматических систем контроля управления и регулирования. Кроме того, поскольку по­давляющее большинство измеряемых физических величин являются аналоговыми, а их обработка индикация и регистрация, как правило, осуществляются цифровыми методами, ЦАП и АЦП нашли широкое применение в автоматических средствах измерений. Так, ЦАП и АЦП входят в состав цифровых измерительных приборов (вольтметров, осциллографов, анализаторов спектра, корреляторов и т. п.), программируемых источников питания, дисплеев на электроннолучевых трубках, графопостроителей, радиолокационных систем установок для контроля элементов и микросхем, являются важными компонентами различных преобразователей и генераторов, устройств ввода вывода информации ЭВМ. Широкие перспективы применения ЦАП и АЦП открываются в телеметрии и телевидении. Серийный выпуск малогабаритных и относительно дешевых ЦАП и АЦП даст возможность еще более широкого использования методов дискретно непрерывного преобразования в науке и технике.

Существует три разновидности конструктивно технологического исполнения ЦАП и АЦП: модульное, гибридное и интегральное. При этом доля производства интегральных схем (ИС) ЦАП и АЦП в общем объеме их выпуска непрерывно возрастает, чему в значительной степени способствует широкое распространение микропроцессоров и методов цифровой обработки данных. ЦАП - устройство, которое создает на выходе аналоговый сигнал (напряжение или ток), пропорциональный входному цифровому сигналу. При этом значение выходного сигнала зависит от значения опорного напряжения U оп, определяющего полную шкалу выходного сигнала. Если в качестве опорного напряжения использовать какой либо аналоговый сигнал, то выходной сигнал ЦАП будет пропорционален произведению входных цифрового и анало­гового сигналов.В АЦП цифровой код на выходе определяется отношением пpeобразуемого входного аналогового сигналa к опорному сигналy, соответствующему полной шкале. Это соотношение выполняется и в том случае, если опорный сигнал изменяется по какому-либо за­кону. АЦП можно рассматривать как измеритель отношений или делитель напряжений с цифровым выходом.

5.4.2. Принципы действия, основные элементы и структурные схемы АЦП

В настоящее время разработано большое количество типов АЦП, удовлетворяющее разнообразным требованиям. В одних случаях преобладающим требованием является высокая точность, в других - скорость преобразования.

По принципу действия все существующие типы АЦП можно разделить на две группы: АЦП со сравнением входного преобразуемого сигнала с дискретными уровнями напряжений и АЦП интегрирующего типа.

В АЦП со сравнением входного преобразуемого сигнала с дискретными уровнями напряжений используется процесс преобразования, сущность которого заключается в формировании напряжения с уровнями, эквивалентными соответствующим цифровым кодам, и сравнении этих уровней напряжения с входным напряжением с целью определения цифрового эквивалента входного сигнала. При этом уровни напряжения могут формироваться одновременно, последовательно или комбинированным способом.

АЦП последовательного счета со ступенчатым пилообразным напряжением является одним из простейших преобразователей (рис. 5.12).



По сигналу "Пуск" счетчик устанавливается в нулевое состояние, после чего по мере поступления на его вход тактовых импульсов с частотой f т линейно-ступенчато возрастает выходное напряжение ЦАП.

При достижении напряжением U вых значения U вх схема сравнения прекращает подсчет импульсов в счетчике Сч, а код с выходов последнего заносится в регистр памяти. Разрядность и разрешающая способность таких АЦП определяется разрядностью и разрешающей способностью используемого в его составе ЦАП. Время преобразования зависит от уровня входного преобразуемого на-пряжения. Для входного напряжения, соответствующего значению полной шка-лы, Сч должен быть заполнен и при этом он должен сформировать на входе ЦАП код полной шкалы. Это требует для n- разрядного ЦАП времени преобразования в (2 n - 1) раз больше периода тактовых импульсов. Для быстрого аналого-цифрового преобразования использование подобных АЦП нецелесообразно.

В следящем АЦП (рис. 5.13) суммирующий Сч заменен на реверсивный счетчик РСч, чтобы отслеживать изменяющееся входное напряжение. Выходной сигнал КН определяет направление счета в зависимости от того превышает или нет входное напряжение АЦП выходное напряжение ЦАП.


Перед началом измерений РСч устанавливается в состояние, соответствующее середине шкалы (01 ... 1). Первый цикл преобразования следящего АЦП аналогичен циклу преобразования в АЦП последовательного счета. В дальнейшем циклы преобразования существенно сокращаются, так как данный АЦП успевает отследить малые отклонения входного сигнала за несколько тактовых периодов, увеличивая или уменьшая число импульсов, записанное в РСч, в зависимости от знака рассогласования текущего значения преобразуемого напряжения U вх и выходного напряжения ЦАП.

АЦП последовательного приближения (поразрядного уравновешивания) нашли наиболее широкое распространение в силу достаточно простой их реализации при одновременном обеспечении высокой разрешающей способ-ности, точности и быстродействия, имеют несколько меньшее быстродействие, но существенно большую разрешающую способность в сравнении с АЦП, реализующими метод параллельного преобразования.



Для повышения быстродействия в качестве управляющего устройства используется распределитель импульсов РИ и регистр последовательного приближения. Сравнение входного напряжения с опорным (напряжением обратной связи ЦАП) ведется, начиная с величины, соответствующей старшему разряду формируемого двоичного кода.

При пуске АЦП с помощью РИ устанавливается в исходное состояние РПП:

1000 . . .0. При этом на выходе ЦАП формируется напряжение, соответствующее половине диапазона преобразования, что обеспечивается включением его старшего разряда. Если входной сигнал меньше, чем сигнал от ЦАП, в следующем такте с помощью РПП на цифровых входах ЦАП формируется код 0100. . . 0, что соответствует включению 2-го по старшинству разряда. В результате выходной сигнал ЦАП уменьшается вдвое.

Если входной сигнал превышает сигнал от ЦАП, в очередном такте обеспечивается формирование кода 0110 ... 0 на цифровых входах ЦАП и включение дополнительного 3-го разряда. При этом выходное напряжение ЦАП, возросшее в полтора раза, вновь сравнивается с входным напряжением и т. д. Описанная процедура повторяется n раз (где n - число разрядов АЦП).

В результате на выходе ЦАП сформируется напряжение, отличающееся от входного не более, чем на единицу младшего разряда ЦАП. Результат преобразования снимается с выхода РПП.

Достоинством данной схемы является возможность построения многоразрядных (до 12 разрядов и выше) преобразователей сравнительно высокого быстродействия (с временем преобразования порядка несколько сот наносекунд).

В АЦП непосредственного считывания(параллельного типа) (рис. 5.15) входной сигнал одновременно прикладывается ко входам всех КН, число m которых определяется разрядностью АЦП и равно m = 2 n - 1, где n - число разрядов АЦП. В каждом КН сигнал сравнивается с опорным напряжением, соответствующем весу определенного разряда и снимаемым с узлов резисторного делителя, питаемого от ИОН.



Выходные сигналы КН обрабатываются логическим дешифратором, вырабатывающим параллельный код, являющийся цифровым эквивалентом входного напряжения. Подобные АЦП обладают самым высоким быстродействием. Недостаток таких АЦП заключается в том, что с ростом разрядности количество требуемых элементов практически удваивается, что затрудняет построение многоразрядных АЦП подобного типа. Точность преобразования ограничивается точностью и стабильностью КН и резисторного делителя. Чтобы увеличить разрядность при высоком быстродействии реализуют двухкаскадные АЦП, при этом с выходов второй ступени ДШ снимаются младшие разряды выходного кода, а с выходов ДШ первой ступени - старшие разряды.

АЦП с модуляцией длительности импульса (однотактный интегрирующий)

АЦП характеризуется тем, что уровень входного аналогового сигнала U вх преобразуется в импульс, длительность которого t имп является функцией значения входного сигнала и преобразуется в цифровую форму с помощью подсчета числа периодов опорной частоты, которые укладываются между началом и концом импульса. Выходное напряжение интегратора под действием подклю-


ченного к его входу U оп изменяется от нулевого уровня со скоростью

В момент, когда выходное напряжение интегратора становится равным входному U вх, КН срабатывает, в результате чего заканчивается формирование длительности импульса, в течение которого в счетчиках АЦП происходит подсчет числа периодов опорной частоты. Длительность импульса определяется временем, за которое напряжение U вых изменяется от нулевого уровня до U вх:

Достоинство данного преобразователя заключается в его простоте, а недостатки - в относительно низком быстродействии и низкой точности.

1. Каковы устройство, принцип работы и применение:

а) фотоэлектрических преобразователей;

Фотоэлектрическими называются такие преобразователи, у которых выходной сигнал изменяется в зависимости от светового потока, падающего на преобразователь. Фотоэлектрические преобразователи или, как мы будем их называть в дальнейшем, фотоэлементы делятся на три типа:

1)фотоэлементы с внешним фотоэффектом

Они представляют собой вакуумные или газонаполненные сферические стеклянные баллоны, на внутреннюю поверхность которых наносится слой фоточувствительного материала, образующий катод. Анод выполняется в виде кольца или сетки из никелевой проволоки. В затемненном состоянии через фотоэлемент проходит темновой ток, как следствие термоэлектронной эмиссии и утечки между электродами. При освещении фотокатод под влиянием фотонов света имитирует электроны. Если между анодом и катодом приложено напряжение, то эти электроны образуют электрический ток. При изменении освещенности фотоэлемента, включенного в электрическую цепь, изменяется соответственно фототок в этой цепи.

2)фотоэлементы с внутренним фотоэффектом

Они представляют собой однородную полупроводниковую пластину с контактами, например из селенида кадмия, которая под действием светового потока изменяет свое сопротивление. Внутренний фотоэффект заключается в появлении свободных электронов, выбитых квантами света из электронных орбит атомов, остающихся свободными внутри вещества. Появление свободных электронов в материале, например в полупроводнике, эквивалентно уменьшению электрического сопротивления. Фоторезисторы имеют высокую чувствительность и линейную вольт-амперную характеристику (ВАХ), т.е. их сопротивление не зависит от приложенного напряжения.

3)фотогальванические преобразователи.

Данные преобразователи представляют собой активные светочувствительные полупроводники, создающие при поглощении света вследствие фотоэффектов в запорном слое свободные электроны и ЭДС.

Фотодиод (ФД) может работать в двух режимах - фотодиодном и генераторном (вентильном). Фототранзистор - полупроводниковый приемник лучистой энергии с двумя и большим числом р - «-переходов, в которых совмещен фотодиод и усилитель фототока.

Фототранзисторы, как и фотодиоды, применяются для преобразования световых сигналов в электрические

б) емкостных преобразователей;

Емкостный преобразователь представляет собой конденсатор,емкость которого изменяется под действием измеряемой неэлек­трической величины. В качестве емкостного преобразователя широко используют плос­кий конденсатор, емкость которого можно выразить формулой C =e0eS/5, где е0- диэлектрическая постоянная воздуха (е0= 8,85 10"12Ф/м;е - относительная диэлектрическая проницаемость среды между обкладками конденсатора; S-площадь обкладки; 5-расстояние между обкладками)

Так как измеряемая неэлектрическая величина может быть функционально связана с любым из этих параметров, то устрой­ство емкостных преобразователей может быть самым различным в зависимости от области применения. Для измерения уровней жид­ких и сыпучих тел используют цилиндрические или плоские кон­денсаторы; для измерения малых перемещений, быстроизменяющихся сил и давлений - дифференциальные емкостные преоб­разователи с переменным зазором между обкладками. Рассмотрим принцип использования емкостных преобразователей для изме­рения различных неэлектрических величин.

в) тепловых преобразователей;

Тепловой преобразователь представляет собой проводник илиполупроводник с током, с большим температурным коэффици­ентом, находящийся в теплообмене с окружающей средой. Име­ется несколько путей теплообмена: конвекцией; теплопроводнос­тью среды; теплопроводностью самого проводника; излучением.

Интенсивность теплообмена проводника с окружающей сре­дой зависит от следующих факторов: скорости газовой или жид­кой среды; физических свойств среды (плотности, теплопровод­ности, вязкости); температуры среды; геометрических размеров проводника. Эту зависимость температуры проводника, а следова­тельно, и его сопротивления от перечисленных факторов можно

использовать для измерения различных неэлектрических величин,характеризующих газовую или жидкую среду: температуры, ско­рости, концентрации, плотности (вакуума).

г) ионизационных преобразователей;

Ионизационными преобразователями называют такие преобра­зователи, в которых измеряемая неэлектрическая величина функ­ционально связана с током электронной и ионной проводимости газовой среды. Поток электронов и ионов получается в ионизационных пре­образователях либо ионизацией газовой среды под воздействием того или иного ионизирующего агента, либо путем термоэлек­тронной эмиссии, либо путем бомбардировки молекул газовой среды электронами и т.д.

Обязательные элементы любого ионизационного преобразова­теля - источник и приемник излучений.

д) реостатных преобразователей;

Реостатный преобразователь представляет собой реостат, движок которого перемещается под действием измеряемой неэлектрической величины. На каркас из изоляционного ма­териала намотана с равномерным ша­гом проволока. Изоляция проволоки на верхней границе каркаса зачищает­ся, и по металлу скользит щетка. До­бавочная щетка скользит по токосъемному кольцу. Обе щетки изоли­рованы от приводного валика. Реостатные преобразователи вы­полняются как с проводом, намотан­ным на каркас, так и реохордного типа. В качестве материала провода применяют нихром, манганин, константан и др. В ответственных случаях, когда требования к износоустойчивости контактных поверхностей очень вели­ки или когда контактные давления очень малы, применяют сплавы платины с иридием, палладием и т.д. Провод реостата должен быть покрыт либо эмалью, либо слоем оксидов для изоляции соседних витков друг от друга. Движ­ки бывают из двух-трех проволочек (платина с иридием) с кон­тактным давлением 0,003...0,005 Н или пластинчатые (серебро, фосфористая бронза) с усилием 0,05...0,1 Н. Контактная поверх­ность намотанного провода полируется; ширина контактной по­верхности равна двум-трем диаметрам провода. Каркас реостат­ного преобразователя выполняется из текстолита, пластмассы или из алюминия, покрытого изоляционным лаком, или оксидной пленкой. Формы каркасов разнообразные. Реактивное сопротив­ление реостатных преобразователей очень мало и им обычно можно пренебречь на частотах звукового диапазона.

Реостатные преобразователи могут быть использованы для измерения виброускорений и виброперемещений с ограниченным частотным диапазоном.

е) тензорезисторных преобразователей;

Тензорезисторный преобразователь (тензорезистор) представляет собой проводник, изменяющий свое сопротивление при деформации растяжения или сжатия. Длина проводника / и площадь поперечного сечения S изменяются при его деформациях. Эти деформации кристаллической решетки приводят к изменению удельного сопротивления проводника р и, следовательно, к изменению полного сопротивления

Применение: для измерения деформаций и механических на­пряжений, а также других статических и динамических механи­ческих величин, которые пропорциональны деформации вспомогательного упругого элемента (пружины), например пути, ус­корения, силы, изгибающего или вращающего момента, дав­ления газа или жидкости и т.д. По этим измеряемым величинам можно определить производные величины, например массу (вес), степень заполнения резервуаров и т.д. Проволочные тензорезисторы на бумажной основе, а так­же фольговые и пленочные применяют для измерения относительных деформаций от 0,005... 0,02 до 1,5...2 %. Свободные проволочные тензорезисторы могут быть использованы для измерения деформаций до 6... 10 %. Тензорези­сторы практически безынерционны и применяются в диапазоне частот 0... 100 кГц.

ж) индуктивных преобразователей;

Индуктивные измерительные преобразователи предназначены для преобразования положения (перемещения) в электрический сигнал. Они являются наиболее компактными, помехоустойчивыми, надежными и экономичными измерительными преобразователями при решении задач автоматизации измерения линейных размеров в машино- и приборостроении.

Индуктивный преобразователь состоит из корпуса, в котором на направляющих качения размещен шпиндель, на переднем конце которого расположен измерительный наконечник, а на заднем – якорь. Направляющая защищена от внешних воздействий резиновым манжетом. Связанный со шпинделем якорь находится внутри закрепленной в корпусе катушки. В свою очередь обмотки катушки электрически связаны с кабелем, закрепленным в корпусе и защищенным от перегибов конической пружиной. На свободном конце кабеля имеется разъем, служащий для подключения преобразователя к вторичному прибору. Корпус и шпиндель выполнены из закаленной нержавеющей стали. Переходник, соединяющий якорь со шпинделем состоит из титанового сплава. Пружина, создающая измерительное усилие, отцентрирована, что исключает трение при движении шпинделя. Такая конструкция преобразователя обеспечивает снижение случайной погрешности и вариации показаний до уровня менее 0,1 мкм.

Индуктивные преобразователи широко применяют в основном для измерения линейных и угловых перемещений.

з) магнитоупругих преобразователей;

Магнитоупругие преобразователи являются разновидностью электромагнитных преобразователей. Они основаны на явлении изменения магнитной проницаемости μ ферромагнитных тел в зависимости от возникающих в них механических напряжений σ, связанных с воздействием на ферромагнитные тела механичес­ких сил Р (растягивающих, сжимающих, изгибающих, скручи­вающих). Изменение магнитной проницаемости ферромагнитного сердечника вызывает изменение магнитного сопротивления сер­дечника RM. Изменение же RM ведет к изменению индуктивности катушки L , находящейся на сердечнике. Таким образом, в магнитоупругом преобразователе имеем следующую цепь преобра­зований:

Р -> σ -> μ -> Rм -> L .

Магнитоупругие преобразователи могут иметь две обмотки (трансформаторного типа). Под действием силы вследствие изме­нения магнитной проницаемости изменяется взаимная индуктивность М между обмотками и наводимая ЭДС вторичной обмотки Е. Цепь преобразования в этом случае имеет вид

Р -> σ -> μ -> Rм -> М -> Е.

Эффект изменения магнитных свойств ферромагнитных мате­риалов под влиянием механических деформаций называют магнитоупругим эффектом.

Магнитоупругие преобразователи применяют:

Для измерения больших давлений (больше 10 Н/мм2 , или 100 кГ/см2), так как они непосредственно воспринимают давление и не нуждаются в дополнительных преобразователях;

Для измерения силы. В этом случае предел измерения прибора определяется площадью магнитоупругого преобразователя. Дан­ные преобразователи деформируются под действием силы очень незначительно. Так, при l = 50 мм, △l < 10 мкм они имеют высо­кую жесткость и собственную частоту до 20... 50 кГц. Допустимые напряжения в материале магнитоупругого преобразователя не дол­жны превышать 40 Н/мм2 .

и) электролитических преобразователей сопротивления;

Электролитические преобразователи относятся к типу электрохимических преобразователей. В общем случае электрохимический преобразователь представляет собой электролитическую ячей­ку, заполненную раствором с помещенными в нее электродами, служащими для включения преобразователя в измерительную цепь. Как элемент электрической цепи электролитическая ячейка мо­жет характеризоваться развиваемой ею ЭДС, падением напряжения от проходящего тока, сопротивлением, емкостью и индук­тивностью. Выделяя зависимость между этими электрическими параметрами и измеряемой неэлектрической величиной, а также подавляя действие других факторов, можно создать преобразователи для измерения состава и концентрации жидких и газообразных сред, давлений, перемещений, скорости, ускорения и других величин. Электрические параметры ячейки зависят от состава ра­створа и электродов, химических превращений в ячейке, темпе­ратуры, скорости перемещения раствора и др. Связи между электрическими параметрами электрохимических преобразователей и неэлектрическими величинами определяются законами электро­химии.

Принцип действия электролитических пре­образователей основан на зависимости сопротивления электро­литической ячейки от состава и концентрации электролита, а также от геометрических размеров ячейки. Сопротивление столба жид­кости электролитического преобразователя:

R = ρh/S = k/૪

где ૪= 1/ρ - удельная проводимость электролита; k - постоянная преобразователя, зависящая от соотношения его геометрических размеров, определяемая обычно экспериментально.