Аритмии по типу re entry. Возникновение аритмии по механизму: ранней и поздней постдеполяризации, макро- и микро- ре-энтри

Возбуждающий импульс формируется на мембране клеток путем генерации потенциала действия. Деполяризация одной клетки вызывает уменьшение отрицательного потенциале покоя соседней клетки, в результате чего он достигает порогового значения, и происходит деполяризация. Форма, ориентация и присутствие щелевидных соединений между клетками миокарда обусловливают мгновенную передачу деполяризации, что может быть описано как волна деполяризации. После деполяризации клетка не может снова деполяризоваться до тех пор, пока не пройдет определенное время, необходимое для восстановления клетки, так называемый рефрактерный период. Клетки, способные деполяризоваться, называются возбудимыми, а неспособные - рефрактерными.

При синусовом ритме источником волн возбуждения служит синусовый узел, между предсердием и желудочком они передаются через атриовентрикулярный узел. Генерация импульсов (и ЧСС) регулируется вегетативной нервной системой и циркулирующими в крови катехоламинами. При тахиаритмии эта регуляция нарушается, и, как следствие, нарушается сердечный ритм.

Блокада проведения

Электрические волны будут распространяться до тех пор, пока на их пути существуют возбудимые клетки. Анатомические препятствия, такие как кольцо митрального клапана, полая вена, аорта и т.д., не содержат кардиомиоцитов и поэтому препятствуют распространению волн. Такое явление называют постоянной блокадой проводимости, так как данная блокада присутствует всегда Еще одним важным источником фиксированной блокады проводимости служат погибшие клетки, например, на месте рубца после ИМ.

Когда блокада присутствует только при определенных обстоятельствах, говорят о функциональной блокаде проведения. Примером служит ишемия, при которой клетки миокарде повреждаются и теряют способность к проведению возбуждения. Именно функциональный блок препятствует обратному распространению волны, поскольку клетки, находящиеся позади распространяющейся волны возбуждения, временно рефрактерны и не пропускают возбуждение ретроградно. Другие причины функциональных блокад - цианоз, растяжение миокарда, частота или направление волны.

Механизм развития аритмии

Выделяют 3 самостоятельных механизма:

  • Повышение автоматизма.
  • Re-entry (механизм «повторного входа» волны возбуждения).
  • Триггерная активность.

Механизмы аритмий

Повышение автоматизма

Если группа клеток миокарда деполяризуется быстрее, чем синусовый узел, они будут выступать в роли источника волн возбуждения, проводящихся по всему миокарду. Этот очаг может находиться как в предсердиях, так и в желудочках. Если он находится в предсердии, то подавляет синусовый узел. Поскольку клетки обычно локализуются в одном месте, тахикардию называют очаговой. К местам, где кардиомиоциты чаще всего подвержены изменению размера/формы или действию высокого давления, относят участки впадения вен (верхней полой, легочных) в предсердия, терминальный гребень, коронарный синус, область атриовентрикулярного узла, кольцо митрального и трехстворчатого клапанов, выносящий тракт желудочков.

Механизм re-entry («повторного входа» волны возбуждения)

На его долю приходится более 75% клинических форм аритмий. Причина - неконтролируемое распространение волны возбуждения на фоне возбудимого миокарда. Для развития re-entry (реципрокной) тахикардии должно существовать, как минимум, 2 пути проведения вокруг зоны нарушенной проводимости. Наилучший пример - ЖТ из-за повторной циркуляции импульса вокруг рубца в левом желудочке.

  1. Рубцовая ткань - участок блокады, вокруг нее нормальные импульсы из синусового узла проходят к здоровому миокарду (А). Через поврежденную ткань миокарда импульсы проходят медленно (Б). Получаются 2 отдельных пути проведения.
  2. Сразу за импульсом из синусового узла следует желудочковая экстрасистола, которая проходит через участок А, но блокируется в участке В, все еще рефрактерном после предыдущего синусового сокращения.
  3. Однако дистапьный конец участка В уже способен к возбуждению, и импульс проходит обратно по участку В, чья проводимость уже восстановилась в течение того периода, за который импульс достиг проксимального конца. В участке В скорость проведения импульса падает, в то время как клетки участка А снова способны к возбуждению и проведению импульса.

Таким образом формируется волна re-entry которую постоянно поддерживают участки возбуждения в миокарде.

Триггерная активность

Сочетает в себе черты обоих вышеописанных механизмов. Вызвана спонтанной (автоматической) постдеполяризацией, происходящей в фазу 3 (ранняя постдеполяризация) или в фазу 2 (поздняя постдеполяризация) потенциала действия. Такие постдеполяризации часто бывают вызваны экстрасистолами и индуцирукциямм подобно re-entry тахикардии. Когда постдеполяризация достигает порогового уровня образуется одиночный или групповой потенциал действия. Постдеполяризация может быть вызвана ишемией, препаратами, удлиняющими интервал QT, повреждением клетки или низким содержанием калия. По такому механизму развиваются тахикардия типа «пируэт» и нарушения ритма вследствие токсичности дигоксина.

Электрофизиологические исследования

Наиболее эффективны при диагностике тахикардий. Когда диагноз уже подтвержден или всерьез подозревается, эту процедуру сочетают с катетерной абляцией в рамках лечения аритмии. Надо заметить, что при электрофизиологических исследованиях обычно измеряют длину сердечного цикла (в мс), а не ЧСС, например, 60 в минуту равны 1000 мс, 100 в минуту равны 600 мс, 150 в минуту равны 400 мс.

Составление схемы (картирование) электрической активности сердца

Электрофизиологическое исследование ошибочно считают сложной процедурой. По существу, это регистрация сердечных импульсов, как при синусовом ритме, так и при аритмии, или в ответ на кардиостимуляцию различных зон сердца. ЭКГ содержит большую часть этой информации, потому во время электрофизиологических исследований регистрируют ЭКГ в 12 отведениях.

Внутрисердечная электрография

При ЭКГ суммируется сердечная активность в целом. Данные электрической активности определенного участка сердца получают путем расположения 2-миллиметровых электродов прямо на поверхности сердечной мышцы. Интракардиальная кардиография характеризуется большей точностью и дает наилучшие данные при частоте записи, в четыре раза быстрее, чем при ЭКГ.

Может быть зарегистрирована разность потенциалов как между двумя рядом расположенными электродами (биполярная электрограмма), так и между одним электродом и бесконечностью (униполярная электрограмма). Униполярная электрограмма более точна в отношении направления и локализации электрической активности, однако она и более чувствительна к помехам. Важно заметить, что через любой из этих электродов можно провести кардиостимуляцию.

Протоколы кардиостимуляции

При электрофизиологическом исследовании кардиостимуляцию проводят заранее определенным способом, называемым программной стимуляцией. Она бывает трех видов:

  1. Кардиостимуляция по ступенчато-возрастающей методике (инкрементная стимуляция): интервал между стимулами устанавливают
    немного ниже синусового ритма и ступенчато снижают на 10 мс до наступления блокады или достижения заранее определенного нижнего уровня (обычно 300 мс).
  2. Кардиостимуляция методом экстрастимулов: за цепочкой из 8 стимуляций с фиксированным интервалом следует дополнительный (экстрастимул), который подается в промежутке между последним импульсом ведущей цепочки и первым экстрастимулом. Импульсы ведущей цепочки обозначают S1, первый экстрастимул - S2, второй экстрастимул - S3 и т.д. Экстрастимул может быть подан после ощущаемого сердечного сокращения (добавочное сокращение).
  3. Кардиостимуляция очередями: стимуляция с фиксированной циклической частотой в течение определенного времени.

Катетер вводят в правые отделы сердца через бедренные вены с рентгеноскопическим контролем направления. Эти изображения правой передней проекции (сверху) и левой передней проекции (снизу) отражают стандартное расположение катетера в верхней части правого предсердия (рядом с синусовым узлом, на пучке Гиса, на верхушке правого желудочка) и катетера, проведенного через ось коронарного синуса, огибающего сзади левое предсердие по предсердно-желудочковой борозде. Из этого положения регистрируют интракардиальную электрограмму от левого предсердия и желудочка. Катетеры часто вводят через правую или левую подключичные вены.

В интракардиапьной ЭКГ данные упорядочены следующим образом: верхняя часть правого предсердия, пучок Гиса, коронарный синус и правый желудочек. Показания каждого биполярного катетера выстроены от проксимального положения к дистальному. При синусовом ритме начало возбуждения регистрируется в верхней части правого предсердия, оно проходит через пучок Гиса, а затем вдоль катетера коронарный синус от проксимального к дистальному положению. Раннее желудочковое возбуждение регистрируют в верхушке правого желудочка (где присутствуют волокна Пуркинье).

Показатели нормального синусового интервала: РА - 25-55 мс, АН - 50-105 мс, HV - 35-55 мс, QRS <120 мс, корригированный ОТ <440 мс для мужчин и <460 мс для женщин.

Применение электрофизиологических исследований

Функция синусового узла

Показателями функционирования синусового узла служат скорректированное время восстановления синусового узла и синусовая проводимость. Однако данные исследования не являются достоверными, поскольку на функцию синусового узла влияют тонус вегетативной нервной системы, лекарственные препараты и ошибки при исследовании Дисфункция синусового узла лучше всего диагностируется с помощью амбулаторного мониторинга и нагрузочными пробами. Проведение инвазивного электрофизиологического исследования очень редко позволяет принять окончательное решение в отношении необходимости имплантации пациенту постоянного электрокардиостимулятора.

Атриовентрикулярная проводимость

Атриовентрикулярная блокада. Степень блокады оценивают с помощью ЭКГ, кроме этого, можно установить еще и уровень блокады (непосредственно атриовентрикулярный узел, или система Гиса-Пуркинье, или блокада ниже узла). Уровень блокады с легкостью устанавливается с помощью электрофизиологического исследования. При блокаде атриовентрикулярного узла увеличено время АН, при подузловой блокаде - HV. Время АН (но не HV) может быть уменьшено при физической нагрузке, введении атропина или изопреналина и увеличено с помощью вагусных проб.

Функцию атриовентрикулярного узла оценивают как антеградно (от предсердий к желудочкам), так и ретроградно (от желудочков к предсердиям), с использованием стимуляции по ступенчато-возрастающей методике и метода экстрастимуляции. При инкрементной стимуляции верхней части правого предсердия проведение наблюдается в точках пучка Гиса, верхушки правого желудочка до наступления блокады. Самый большой интервал стимуляции, при котором случается блокада при антеградном исследовании, называется периодом Венкебаха (точкой Венкебаха). Нормальное значение менее 500 мс, но оно может увеличиваться с возрастом или под влиянием тонуса вегетативной нервной системы. Период Венкебаха измеряют также при ретроградном исследовании, но в этом случае отсутствие желудочко-предсердной проводимости может быть вариантом нормы. В точке верхней части правого предсердия применяется экстрастимуляция Уменьшая интервал между S1 и S2, оценивают атриовентрикулярное проведение. Самый длительный интервал при котором наблюдают блокаду, называют узловым атриовентрикулярным эффективным периодом рефрактерности. Показатель измеряют при интервалах ведущей цепочки 600 и 400 мс. При наличии желудочко-предсердного проведения измеряется ретроградный показатель эффективного периода рефрактерности атриовентрикулярнэго узла.

Затухание проводимости: является ключом к физиологические свойствам атриовентрикулярного узла. С уменьшением интервале между прошедшими через атриовентрикулярный узел импульсами уменьшается скорость проведения через него. На атриовентрикулярной проводимости это проявляется при уменьшении интервале предсердной стимуляции удлинением интервала АН (время AV). Это феномен может наблюдаться во время инкрементной и экстрастимуляции. Если построить график зависимости интервала АН от S1S2 (= А1А2) во время экстрастимуляции, можно получить кривую антеградного проведения.

Двойственная физиология атриовентрикулярного узла: у многих пациентов (но не у всех) удается определить два электрически) соединения между миокардом предсердие, плотно окружающие атриовентрикулярный узел, и непосредственно атриовентрикулярный узлом, которые обладают разными свойствами проводимости. Медленный путь, в отличие от быстрого, имеет более низкую скорость проведения и более короткий эффективный период рефрактерности. Это выявляется при построении кривой антеградного проведения. При более длительном времени А1А2 проведение импульса в основном осуществляется по быстрому пути, однако, когда в нем будет достигнута точка эффективного периода рефрактерности, проведение пойдет по медленному пути, и произойдет внезапное удлинение времени АН. Это явление называют разрывом АН интервала, и оно характеризуется удлинением периода АН на >50 мс после уменьшения интервала А1А2 на 10 мс. Наличие двойных путей атриовентрикулярного узла является предрасполагающим фактором для развития АВУРТ.

Определение аномальных атриовентрикулярных проводящих путей

В норме между предсердием и желудочком существует только одна связь. Активация предсердия (через стимуляцию желудочка) или желудочка (через стимуляцию предсердия или при синусовом ритме) должна начинаться в атриовентрикулярном узле. Дополнительные проводящие пути должны проводить импульс без затухания. Их наличие можно выявить по аномальным способам активации, а также с помощью инкрементной или экстрастимуляции.

Предсердная стимуляция. По мере снижения импульсации атриовентрикулярного узла активация желудочков в большей степени происходит с помощью добавочных путей. Соответственно будут наблюдаться сохраняющееся атриовентрикулярное проведение и увеличение длительности комплекса ORS. Важно заметить, что если эффективный период рефрактерности добавочных путей активации короче эффективного периода рефрактеэности атриовентрикулярного узла, то комплекс QRS будет резко сужаться, а время атриовентрикулярного проведения внезапно удлинится, когда наступит блокада дополнительных проводящих путей.

Желудочковая стимуляция. Нормальный порядок предсердной активации таков: пучок Гиса, коронарный синус (от проксимального конца к дистальному) и, наконец, верхняя часть правого предсердия - такой путь активации называется концентрическим. Если активация предсердия происходит по дополнительным проводящим путям, наблюдают эксцентрический тип активации Место ранней активации предсердия будет локализовано в дополнительных проводящих путях, при этом также будет наблюдаться незатухающее желудочково-предсердное проведение.

Индуцирование аритмии

Наличие дополнительных проводящих путей, двойной физиологии атриовентрикулярного узла или рубца в стенке желудочка является предрасполагающим фактором для развития тахикардии, но это не значит, что она обязательно возникнем Диагноз может быть подтвержден индуцированием тахикардии.

В дополнение к описанным методам кардиостимуляции применяют стимуляцию очередями, экстрастимупяцию множественными экстрастимулами и добавочные стимулы. При невозможности индукции тахикардии все эти методики повторяю- на фоне введения изопре налина (1-4 мкг/мин) или болюсного его вливания (1-2 мкг). Этим методом особенно хорошо выявляют тахикардии, развивающиеся по механизму повышенного автоматизма. Активные протоколы индукции повышают вероятность возникновения нежелательной аритмии. Такой как ФП или ФЖ.

При появлении индуцированной тахикардии необходимо сравнить ЭКГ пациента с его ЭКГ в 12 отведениях зарегистрированной ранее во время появления симптомов.

Программируемая стимуляция желудочков

Электрофизиологические исследования, ставящие своей целью индукцию ЖТ (исследование по стимуляции ЖТ), раньше использовались для стратификации риска внезапной сердечной смерти, оценки эффективности противоаритмических препаратов при подавлении ЖТ и необходимости имплантации кардиовертера-дефибриллятора. В настоящее время имеются данные о небольшой прогностической роли данного исследования, поэтому решение относительно проведения имплантации кардиовертера-дефибриллятора необходимо принимать с учетом других факторов риска, в частности функции левого желудочка. Электрофизиологическое исследование может быть полезным перед установкой искусственного водителя ритма по другим причинам:

  • Для помощи в программировании устройства.
  1. Хорошо ли переносится пациентом ЖТ в гемодинамическом отношении?
  2. Легко ли она прерывается с помощью овердрайв-кардиостимуляции?
  3. Есть ли желудочково-предсердная проводимость? Во время стимуляции желудочков или ЖТ?
  • Для оценки возможности проведения абляции ЖТ (например, абляция ножки пучка Гиса).
  • Для выяснения наличия других нарушений ритма, в том числе легко вызываемых аритмий.

Программируемая желудочковая стимуляция выполняется с помощью протокола, разработанного Уэлленсом, или его модификацией.

Клинические показания

  • Подтвержденная тахикардия с наличием клинической симптоматики (в качестве первой стадии диагностики и процедуры абляции).
  • Стратификация риска внезапной сердечной смерти.
  • Предполагаемая, но не подтвержденная тахикардия с наличием клинической симптоматики (только с диагностической целью).
  • Синдром Вольфа-Паркинсона-Уайта.
  • Обморок неясного генеза (предположительно связанный с аритмией).
  • Подозрение (в редких случаях) на внутрипредсердную блокаду или блокаду атриовентрикулярного узла (не подтвержденную документально).

Протокол программируемой желудочковой стимуляции

  • С верхушки правого желудочка экстрастимуляцией снижают интервал между импульсами до достижения рефрактерного периода:
  1. 1 экстрастимул во время синусового ритма;
  2. 2 экстрастимула во время синусового ритма;
  3. 1 экстрастимул после 8 стимулированных сокращений при 600 мс;
  4. 1 экстрастимул после 8 стимулированных сокращений при 400 мс;
  5. 2 экстрастимула после 8 стимулированных сокращений при 400 мс;
  6. 3 экстрастимула во время синусового ритма 0 мс;
  7. 2 экстрастимула после 8 стимулированных сокращений при 600 мс;
  8. 3 экстрастимула после 8 стимулированных сокращений при 400 мс.
  • Если желудочковую аритмию не удапось индуцировать, следует повторить шаги от выносящего тракта правого желудочка. Таким образом, активность протокола кардиостимуляции постепенно повышается, вместе с тем снижается специфичность процедуры. Наиболее ценным с диагностической точки зрения результатом является индукция длительной мономорфной ЖТ одним или двумя экстрастимулами, что свидетельствует о потенциальном риске развития желудочковой аритмии. Кратковременная ЖТ, полиморфная ЖТ и ФЖ относятся к неспецифическим результатам.

Новые технологии

Электрофизиологические процедуры становятся все более сложными (например, при ФП или ВПС) и сопровождаются все большей лучевой нагрузкой для пациента. Обе эти проблемы были решены с помощью нерентгеноскопической трехмерной системы картирования Формируется генерируемое компьютером изображение интересующей нас полости сердца, на которое накладываются электрическая активность и месторасположение электрофизиологического катетера (рис. 10-4). В некоторых случаях есть возможность провести электро физиологическое исследование и абляцию без использования рентгеновского излучения. Более того, трехмерная КТ или МРТ-изображения пациента могут быть импортированы и использоваться в качестве направляющего изображения.

В основе всех аритмий лежит нарушение образования или проведения импульса либо одновременное расстройство обеих функций проводящей системы. Такие аритмии, как синусовая тахи- и брадикардия, связаны соответственно с усилением или угнетением автоматизма клеток синусового узла. В происхождении экстрасистолии и пароксизмальных нарушений ритма выделяют 2 основных механизма: усиление автоматизма эктопических очагов, повторный вход возбуждения (re-entry) и круговое движение импульса.

Усиление автоматизма эктопических очагов может быть связано с ускорением или замедлением спонтанной диастолической деполяризации, колебаниями порога возбуждения и потенциала покоя, а также со следовыми подпороговыми и надпороговыми осцилляциями.

Механизм повторного входа возбуждения (re-entry) заключается в повторном или многократном возбуждении участка миокарда одним и тем же импульсом, совершающим круговое движение. Для реализации этого механизма необходимы два пути проведения, причем по одному из них прохождение импульса нарушено вследствие местной однонаправленной блокады.

Участок миокарда, до которого очередной импульс своевременно не дошел, возбуждается окольным путем с некоторым опозданием и становится источником внеочередного возбуждения. Оно распространяется на соседние участки миокарда, если эти участки успели выйти из состояния рефрактерности.

Механизм macro re-entry возможен вследствие функционального разделения атриовентрикулярного узла на две части, проводящие импульсы с различной скоростью из-за функционирующих дополнительных проводящих путей (при синдроме WPW), а механизм micro re-entry реализуется главным образом по анастомозам в разветвлениях проводящей системы.

Нарушению проведения импульса способствует в первую очередь уменьшение потенциала действия, что может быть связано с уменьшением потенциала покоя. Нарушения проводимости могут развиваться вследствие удлинения периода рефрактерности (замедления реполяризации) в участках проводящей системы.

Одним из механизмов нарушения проводимости является так называемое декрементное проведение, заключающееся в прогрессирующем уменьшении скорости деполяризации и потенциала действия при распространении импульса от одного волокна к другому. Важную роль в механизме парасистолических аритмий играют так называемые блокады входа и выхода в области эктопического очага.

Под блокадой входа понимают невозможность проникновения в эктопический очаг импульсов основного ритма, а под блокадой выхода - невозможность выхода из этого очага части эктопических импульсов.

В основе развития комбинированных аритмий могут лежать сочетания описанных выше и некоторых других механизмов.

«Практическая электрокардиография», В.Л.Дощицин

Аритмии сердца - одно из наиболее частых проявлений сердечно-сосудистых заболеваний. В последние годы достигнуты значительные успехи в диагностике нарушений ритма и проводимости благодаря использованию новых методов длительной регистрации ЭКГ, электрогисографии и программированной стимуляции сердца. Указанными методами получены новые данные об анатомии и электрофизиологии проводящей системы сердца, о патогенетических механизмах нарушений ритма и проводимости. В результате…

I. Нарушения образования импульса: синусовая тахикардия. синусовая брадикардия. синусовая аритмия. миграция источника ритма. экстрасистолы: суправентрикулярные и желудочковые; единичные, групповые, аллоритмические; ранние, средние и поздние; пароксизмальная тахикардия: суправентрикулярная и желудочковая; по механизму re-entry и эктопическая; непароксизмальная тахикардия и ускоренные эктопические ритмы: суправентрикулярные и желудочковые; по механизму re-entry, парасистолические и ускользающие; трепетание предсердий: приступообразное и стойкое; правильной…

Если в процессе расшифровки ЭКГ выявляются признаки какого-либо нарушения ритма или проводимости, то следует использовать специальную методику. Анализ нарушения ритма следует начинать с выявления зубцов Р, оценки их регулярности и частоты предсердного ритма, которая определяется таким же способом, как частота ритма желудочков. При этом можно обнаружить изменения частоты ритма предсердий: его урежение (синусовая брадикардия, синоаурикулярная…

Следует перейти к анализу ритма желудочков: его частоты (если ее не определили ранее) и регулярности интервалов R - R. Возможны отдельные преждевременные комплексы QRS на фоне правильного ритма (экстрасистолы), отдельные выпадения желудочковых комплексов вследствие синоаурикулярной или атриовентрикулярной блокады или полностью неправильный, беспорядочный ритм, характерный для мерцательной аритмии. Необходимо определить также ширину комплексов QRS, положение электрической…

Если Вы хотя бы раз в жизни играли в турнир по покеру, то наверняка сталкивались с таким понятием, как “ре-энтри”. Причем оно существует как в онлайн-покере, так и на живых турнирах, и применяется оно довольно часто. Так что же такое ре-энтри в покере? Для чего оно нужно, и стоит ли его использовать в ходе турнира? Давайте разбираться…

Определение термина

Ре-энтри в покере (англ. “re-entry” – “повторный вход”) – это возможность игрока сделать дополнительную докупку фишек в том случае, если он проиграет весь свой первоначальный стек. По сути, этот термин означает то же самое, что и . Но действительно ли полезна докупка фишек на турнире? Или же лучше встать и покинуть турнир, если уж сегодня не повезло?

На самом деле ре-энтри в покере полезны для турниров по двум причинам:

  1. Разгоняется призовой фонд турнира.
  2. Шансы профессионалов на успех увеличиваются.

Давайте остановимся подробнее на каждой из этих причин.

Рост призового фонда

Разумеется, если игроки смогут докупать фишки всякий раз, когда они будут проигрывать свой стек, то призовой фонд турнира медленно, но уверенно будет расти, а значит – повысится и интерес других участников к этому турниру. Причем, что интересно, по мере увеличения призов на турнире увеличивается и количество игроков, которые сделали докупку.

Логика тут совершенно проста. Игроки видят, что призовой фонд турнира растёт, и даже в том случае, если они проигрывают свой стартовый стек, они предпринимают ещё одну попытку, сделав ре-энтри и докупив фишек. Причём в современных турнирах чаще всего вводится неограниченное число докупок, а это значит, что Вы можете докупать фишки снова и снова, разгоняя призовой фонд турнира.

Повышение шансов профессионалов

Сегодня даже начинающие игроки в покер знают, что победить в раздаче может совершенно любая рука. Вы можете выйти в олл-ин, имея на руках двух тузов, и проиграть в итоге человеку, у которого будут разномастные 7-2. Причем случается это намного чаще, чем Вы привыкли думать. И именно поэтому ре-энтри в покере позволяют повысить шансы профессионалов, играющих по стратегии, а шансы удачливых новичков уменьшить, поскольку удача не может им улыбаться вечно.

Соответственно, растёт математическое ожидание между начинающим игроком и регуляром, который действует по заранее разработанной стратегии.

Что на практике?

Однако всё, что мы рассказали выше, касается исключительно теории. На практике же всё обстоит несколько иначе. Ведь человеку свойственно ошибаться, и даже опытные игроки порой могут начать искать причины своих неудач в самих себе, даже если они проиграли исключительно по воле случая. Поэтому мы не рекомендуем делать ре-энтри более двух раз на одном турнире. Потому что чем больше “докупок” Вы сделаете, тем большим будет Ваше желание “отыграться”. Соответственно, Вы сами начнёте тильтовать, что в итоге не принесёт ничего хорошего для Вашего банкролла.

С другой стороны, размер докупки всегда одинаков, и обычно он равняется размеру стартового стека игрока на момент начала турнира. То есть, если в самом начале турнира каждый из игроков получил по тысяче фишек, то за докупку вы тоже получите тысячу игровых фишек. Однако стоит понимать, что в начале турнира блайнды были куда меньше, да и стеки игроков были примерно одинаковыми.

А если Вы сделаете докупку в середине турнира, то за Ваша тысяча фишек будет стоить, максимум, несколько больших блайндов, в то время как Ваши оппоненты будут иметь стеки по нескольку десятков тысяч фишек. Соответственно, Вы вряд ли сможете удачно выступить, имея такой ограниченный стек.

К счастью, сделать ре-энтри в покере можно только до определённого периода, после которого наступает игра “на вылет”.

К нарушению проведения импульса в сердце приводят следующие факторы:

1. Уменьшение величины потенциалов действия.

2. Замедление распространения образовавшегося импульса к невозбужденным клеткам (например, при переходе волны возбуждения от жизнеспособных волокон Пуркинье к погибшим рабочим кардиомиоцитам при инфаркте миокарда).

3. Нарушение межклеточных электротонических взаимодействий.

4. Увеличение сопротивления осевому току со стороны щелевых контактов в результате увеличения внутриклеточного содержания ионов Ca 2+ (при ишемии миокарда или передозировке сердечных гликозидов).

5. Увеличение выраженности анизотропии миокарда. Анизотропия – свойство ткани сердца по-разному проводить импульс в зависимости от направления его продвижения. Увеличение выраженности анизотропии миокарда наблюдается при разрастании в сердце соединительной ткани, а также нарушениях электрофизиологических свойств клеток проводящей системы сердца и рабочих кардиомиоцитов.

Проявлениями нарушений проводимости являются брадиаритмии или тахиаритмии. Брадиаритмии чаще наблюдаются при различных блокадах сердца. Тахиаритмии являются следствием (1) появления ускоренных выскальзывающих ритмов на фоне замедления работы синусового узла, (2) повторного входа волны возбуждения – re-entry.

Патогенез аритмий, обусловленных re-entry

В физиологических условиях после генерации импульса клетками синусового узла волна возбуждения распространяется по проводящей системе сердца с затухающим декрементом. Однако бывают ситуации, когда волна возбуждения не угасает, а рециркулирует, вызывая возбуждение миокарда. Аритмии, в основе которых лежит рециркуляция возбуждения, вызвана механизмом re-entry – «повторного входа» (англ., рис. 5). Для возникновения re-entry необходимо выполнение следующих условий:

Рис. 5 Схематическое изображение условий, необходимых для возникновения re - entry .

Субстратом для re-entry может быть практически любой участок сердца. Различают два типа re-entry – анатомический и функциональный. Анатомический re-entry образован морфологическими структурами – например, петлей волокон Пуркинье, добавочными проводящими путями и др. Функциональный re-entry встречается гораздо чаще анатомического и образован тканями сердца с различными электрофизиологическими свойствами. Альтернативные пути должны обладать более медленной проводимостью импульса. Однонаправленный блок проведения импульсов наблюдается в том случае, если импульс не может распространяться в одном направлении – например, антеградно, но способен распространяться в другом направлении – ретроградно. Это объясняется тем, что кардиомиоциты, составляющие траекторию циркуляции повторной волны возбуждения, обладают разным эффективным рефрактерным периодом. Импульс, который по какой-либо причине не может распространяться антеградно, идет обходным, ретроградным путем. За это время эффективный рефрактерный период участка с однонаправленным блоком заканчивается, и волна возбуждения вновь попадает к участку миокарда с повышенным автоматизмом или триггерной активностью. Центральная зона блока проведения импульса, вокруг которого циркулирует волна возбуждения, создается анатомическими особенностями ткани, ее функциональными свойствами или сочетает в себе эти признаки.

Установлено, что механизмы повторного входа возбуждения лежат в основе многих нарушений ритма: пароксизмальной наджелудочковой тахикардии с повторных входом возбуждения в АВ-узле, пароксизмальной тахикардии из АВ-узла, при тахиаритмиях, связанных с активацией врожденных дополнительных путей проведения импульса (например, синдроме Вольфа-Паркинсона-Уайта), трепетании и фибрилляции предсердий, узловых ритмах из АВ-соединения, ускоренном идиовентрикулярном ритме и др.

Классификация аритмий

СВЯЗАННЫЕ С НАРУШЕНИЕМ АВТОМАТИИ

А. Нарушения автоматизма синусового узла

Синусовая тахикардия

Синусовая брадикардия

Синусовая аритмия

Синдром слабости синусового узла

Б. Эктопические ритмы (гетеротопные аритмии)

Предсердный ритм

Узловой (атриовентрикулярный) ритм

Идиовентрикулярный (желудочковый) ритм

Миграция суправентрикулярного водителя ритма

Атриовентрикулярная диссоциация

СВЯЗАННЫЕ С НАРУШЕНИЕМ ВОЗБУДИМОСТИ

Экстрасистолия

Пароксизмальная тахикардия

СВЯЗАННЫЕ С НАРУШЕНИЕМ ВОЗБУДИМОСТИ И ПРОВОДИМОСТИ

Мерцание (фибрилляция) предсердий (мерцательная аритмия)

Трепетание предсердий

Трепетание и фибрилляция (мерцание) желудочков

СВЯЗАННЫЕ С НАРУШЕНИЕМ ПРОВОДИМОСТИ

Синоатриальная блокада

Внутрипредсердная блокада

Атриовентрикулярная блокада

Внутрижелудочковые блокады (блокады ветвей пучка Гиса).

Синдромы преждевременного возбуждения желудочков

а) Синдром Вольфа-Паркинсона-Уайта (WPW).

б) Синдром укороченного интервала PQ (CLC).

возникновение аритмии по механизму: ранней и поздней постдеполяризации, макро- и микро- ре-энтри.

1)РАННЯЯ ПОСТДЕПОЛЯРИЗАЦИЯ - это преждевременная деполяризация клеток миокарда и проводящей системы, которая появляется тогда, когда фаза реполяризации потенциала дейcтвия еще не завершена, потенциал мембраны еще не достиг потенциала покоя. Этот преждевременный ПД рассматривается как тригерный (наведенный), поскольку он обязан своим возникновением ранней пост деполяризации, исходящей от основного ПД. В свою очередь, второй (наведенный) ПД за счет своей ранней постдеполяризации может вызвать третий, тоже триггерный ПД, а третий ПД - четвертый триггерный ПД и т.д. Если источник триггерной активности находится в желудочках, то на ЭКГ подобный тип нарушений образования импульсов проявляется, как желудочковая экстрасистолия или полиморфная желудочковая тахикардия.

Можно указать таких два важнейших условия возникновения ранних постдеполяризаций, как: удлинение фазы реполяризации потенциала действия и брадикардия. При замедлении реполяризации и, соответственно, увеличении общей продолжительности ПД может возникнуть преждевременная спонтанная деполяризация в тот момент, когда процесс реполяризации еще не завершился. При уменьшении частоты основного ритма сердца (брадикардия) происходит постепенное возрастание амплитуды ранних постдеполяризаций. Достигнув порога возбуждения, одна из них вызывает образование нового ПД еще до завершения исходного.

Поскольку ранние постдеполяризации реализуются за счет активации Na+- и Са2+-каналов, супрессировать связанные с ними нарушения сердечного ритма можно с помощью блокаторов названных каналов.

Возникновению ранних постдеполяризаций способствуют: гиперкатехоламинемия, гипокалиемия, ацидоз, ишемия, синдром удлиненного интервала Q-T. Часто подобный автоматизм является результатом применения антиаритмических препаратов, блокирующих К+-каналы (соталол, хинидин и др.).

2)ПОЗДНИЕ (ЗАДЕРЖАННЫЕ) ПОСТДЕПОЛЯРИЗАЦИИ - это преждевременная деполяризация клеток миокарда и проводящей ткани, которая появляется сразу же после завершения фазы реполяризации. Возникают, как правило, после частичной гиперполяризации (следовые потенциалы). Если амплитуда постдеполяризации достигает КУД, возникает ПД и т.д. Подпороговые колебания мембранного потенциала, которые в норме могут присутствовать, но никогда себя не проявляют, при патологических состояниях, вызывающих Са2+-перегрузку кардиомиоцитов, могут возрастать по амплитуде, достигая порога возбуждения.

Повышение внутриклеточной концентрации ионов кальция вызывает активацию неселективных ионных каналов, обеспечивающих усиленное поступление катионов из внеклеточной среды в кардиомиоцит. При этом в клетку поступают главным образом ионы Na+, концентрация которых в экстрацеллюлярной жидкости намного превышает уровень К+ и Са2+. В результате отрицательный заряд внутренней поверхности клеточной мембраны уменьшается, достигая пороговой величины, вслед за чем возникает серия преждевременных ПД. В конечном итоге формируется цепь тригерных возбуждений.

Тригерная активность клеток сердца, связанная с задержанными постдеполяризациями, может возникнуть под действием сердечных гликозидов или катехоламинов. Очень часто она появляется при инфаркте миокарда.

3)Для формирования MACRO RE-ENTRY с характерными для него свойствами требуются определенные условия:

Наличие устойчивой замкнутой петли, длина ее зависит от анатомического периметра невозбудимого препятствия, вокруг которого движется импульс;

Однонаправленная блокада проведения в одном из сегментов петли re-entry;

Продолжительность распространения волны возбуждения должна быть короче времени, за которое импульс может преодолеть всю длину петли re-entry. Благодаря этому перед фронтом распространяющегося по кругу импульса имеется участок ткани, вышедший из состояния рефрактерности и успевший восстановить свою возбудимость («окно возбудимости»).

Механизм macro reentry лежит, как полагают, в основе трепетания предсердий.

Устранить подобную циркуляцию можно с помощью удлинения периода рефрактерности. При этом «окно возбудимости» может закрыться, поскольку циркулирующая волна наталкивается на участок, находящийся в состоянии рефрактерности. Добиться этого можно с помощью антиаритмических препаратов, блокирующих К+-каналы, что ведет к замедлению реполяризации и увеличению продолжительности рефрактерного периода. В этом случае «окно возбудимости» закрывается, и движение импульса прекращается.

4) При MICRO RE-ENTRY движение импульса происходит по малому замкнутому кольцу, не связанному с каким-либо анатомическим препятствием. Импульс совершает не только круговое, но и центростремительное движение. Ближе к центру ПД снижается, и возбуждение затухает, клетки в центре дают только локальный ответ, т.к. находятся в состоянии рефрактерности и как бы заменяют анатомическое препятствие.

По-видимому, многие сложные тахиаритмии, в частности фибрилляции, связаны с механизмом micro re-entry. Сочетания петель, лежащих в разных плоскостях, возникают у больных с желудочковыми тахикардиями в остром периоде инфаркта миокарда.

Очень часто морфологическим субстратом для возникновения re-entry являются волокна Пуркинье, находящиеся в зоне ишемии. Эти клетки устойчивы к гипоксии и могут не погибать в очаге инфаркта. Однако при этом они меняют свои электрофизиологические характеристики таким образом, что быстрые Na+-каналы превращаются в «медленные». В этом случае проведение импульса замедляется и из зоны ишемии он выходит в тот момент, когда остальной миокард уже находится в состоянии относительной рефрактерности и готов к повторному возбуждению, но импульс из синусового узла еще не поступил. Возникает феномен повторного входа (re-entry), когда миокард дважды стимулируется одним и тем же импульсом: первый раз, когда он поступает из синусового узла, и второй раз, когда он повторно выходит из зоны ишемии. В этом случае разорвать петлю re-entry можно с помощью препаратов, блокирующих «медленные» Nа+-каналы в зоне ишемии (лидокаин, новокаинамид).

Несомненным достоинством этих антиаритмиков является то, что они проявляют высокое сродство именно к аномальным Nа+-каналам в зоне ишемии и практически не ингибируют быстрые Na+-каналы в клетках здорового миокарда, а значит, не влияют на электрофизиологические процессы в интактных кардиомиоцитах.