Презентация на тему "открытие радиоактивности". Открытие радиоактивности

Попов Сергей

Радиоактивность. Открытие новых радиоактивных элементов.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Открытие радиоактивности. Открытие новых радиоактивных химических элементов

Антуан Анри Беккерель Французский физик, лауреат Нобелевской премии по физике и один из первооткрывателей радиоактивности. Он занимался исследованием связи люминесценции и рентгеновских лучей, открытых Анри Пуанкаре.

Беккерелю пришла в голову мысль: не сопровождается ли всякая люминесценция рентгеновскими лучами? Для проверки своей догадки он взял несколько соединений, в том числе одну из солей урана, фосфоресцирующую жёлто-зелёным светом. Осветив её солнечным светом, он завернул соль в чёрную бумагу и положил в тёмном шкафу на фотопластинку, тоже завёрнутую в чёрную бумагу. Через некоторое время, проявив пластинку, Беккерель действительно увидел изображение куска соли. Но люминесцентное излучение не могло пройти через чёрную бумагу, и только рентгеновские лучи могли в этих условиях засветить пластинку. Беккерель повторил опыт несколько раз и с одинаковым успехом. В конце февраля 1896 г. на заседании Французской академии наук он сделал сообщение о рентгеновском излучении фосфоресцирующих веществ. Радиоактивность была открыта им в 1896 году

Через некоторое время в лаборатории Беккереля была случайно проявлена пластинка, на которой лежала урановая соль, не облучённая солнечным светом. Она, естественно, не фосфоресцировала, но отпечаток на пластинке получился. Тогда Беккерель стал испытывать разные соединения и минералы урана (в том числе не проявляющие фосфоресценции), а также металлический уран. Пластинка неизменно засвечивалась. Поместив между солью и пластинкой металлический крестик, Беккерель получил слабые контуры крестика на пластинке. Тогда стало ясно, что открыты новые лучи, проходящие сквозь непрозрачные предметы, но не являющиеся рентгеновскими. Беккерель установил, что интенсивность излучения определяется только количеством урана в препарате и совершенно не зависит от того, в какие соединения он входит. Таким образом, это свойство было присуще не соединениям, а химическому элементу - урану.

Мари́я Склодо́вская-Кюри́ - польский учёный-экспериментатор (физик, химик), педагог, общественный деятель. Дважды лауреат Нобелевской премии: по физике (1903) и по химии (1911), первый дважды нобелевский лауреат в истории. Своим открытием Беккерель делится с учёными, с которыми он сотрудничал – Марией Кюри и Пьером Кюри. Пьер Кюри́ - французский учёный-физик, один из первых исследователей радиоактивности, член Французской Академии наук, лауреат Нобелевской премии по физике за 1903 год.

В своих опытах М. Кюри использовала в качестве признака радиоактивности способность радиоактивных веществ ионизовать воздух. Этот признак гораздо более чувствителен, чем способность радиоактивных веществ действовать на фотопластинку. Измерение ионизационного тока: 1 - корпус ионизационной камеры, 2 - электрод, отделенный от 1 изолирующей пробкой 3,4 - изучаемый препарат, 5 -электрометр. Сопротивление R=108-1012 Ом. При достаточно высоком напряжении батареи все ионы, образуемые в объеме камеры ионизующим излучением, собираются на электроды, и через камеру течет ток, пропорциональный ионизационному действию препарата, В отсутствие ионизующих агентов воздух в камере является непроводником, и ток равен нулю.

Они выяснили, что свойством естественной радиоактивности обладают все соединения урана и в наибольшей степени сам уран. Беккерель же вернулся к интересующим его люминофорам. Правда, он сделал ещё одно крупное открытие, относящееся к радиоактивности. Однажды для публичной лекции Беккерелю понадобилось радиоактивное вещество, он взял его у супругов Кюри и положил пробирку в жилетный карман. Прочтя лекцию, он вернул радиоактивный препарат владельцам, а на следующий день обнаружил на теле под жилетным карманом покраснение кожи в форме пробирки. Беккерель рассказал об этом Пьеру Кюри, и тот поставил на себе опыт: в течение десяти часов носил привязанную к предплечью пробирку с радием. Через несколько дней у него тоже появилось покраснение, перешедшее затем в тяжелейшую язву, от которой он страдал в течение двух месяцев. Так впервые было открыто биологическое действие радиоактивности.

В 1898 г. они обнаружили радиоактивность тория, позднее ими были открыты радиоактивные элементы: РАДИЙ ПОЛОНИЙ

Применение В настоящее время радий иногда используют в компактных источниках нейтронов, для этого небольшие его количества сплавляются с бериллием. Под действием альфа-излучения (ядер гелия-4) из бериллия выбиваются нейтроны: 9Be + 4He → 12C + 1n. В медицине радий используют как источник радона для приготовления радоновых ванн (хотя в настоящее время их полезность оспаривается). Кроме того, радий применяют для кратковременного облучения при лечении злокачественных заболеваний кожи, слизистой оболочки носа, мочеполового тракта. Полоний-210 в сплавах с бериллием и бором применяется для изготовления компактных и очень мощных нейтронных источников, практически не создающих γ-излучения. Важной областью применения полония является его использование в виде сплавов со свинцом, иттрием или самостоятельно для производства мощных и весьма компактных источников тепла для автономных установок, например космических. Кроме того, полоний пригоден для создания компактных «грязных бомб» и удобен для скрытной транспортировки, так как практически не испускает гамма-излучения. Поэтому полоний является стратегическим металлом, должен очень строго учитываться, и его хранение должно быть под контролем государства ввиду угрозы ядерного терроризма.

Благодаря открытию радиоактивного распада элементов, созданию электронной теории и новой модели атома, сущность и значение периодического закона Менделеева предстали в новом свете. Было установлено, что порядковый (атомный) номер элемента в периодической системе (он обозначается «Z») имеет реальный физический и химический смысл: он соответствует общему числу электронов в слоях оболочки нейтрального атома элемента и положительному заряду ядра атома. В 1913-1914 гг. английский физик Г.Г. Дж. Мозли (1887-1915) обнаружил прямую связь между спектром рентгеновских лучей элемента и его порядковым числом. К 1917 г. усилиями ученых разных стран было открыто 24 новых химических элемента, а именно: галлий (Ga), скандий (Sc), германий (Ge), фтор (F); лантаноиды: иттербий(Yb), гольмий (Но), тулий (Ти), самарий (Stn), гадолиний (Gd), празеодим (Рг), диспрозий (Dy), неодим (Nd), европий (Ей) и лютеций (Lu); инертные газы: гелий (Не), неон (Ne), аргон (Аг), криптон (Кг), ксенон (Хе) и радон (Rn) и радиоактивные элементы (к которым относился и радон): радий (Ra), полоний (Ро), актиний (Ас) и протактиний (Ра). Количество химических элементов в периодической системе Менделеева увеличилось с 63 в 1869 г. до 87 в 1917.

Радиоактивный элемент - химический элемент, все изотопы которого радиоактивны. На практике этим термином часто называют всякий элемент, в природной смеси которого присутствует хотя бы один радиоактивный изотоп, то есть если элемент проявляет радиоактивность в природе. Кроме того, радиоактивными оказываются все изотопы любого из синтезированных на сегодняшний день искусственных элементов.

Радиоактивный химический элемент, при нормальных условиях - нестабильные кристаллы тёмно-синего цвета. Впервые астат был получен искусственно в 1940 Д. Корсоном, К. Р. Маккензи и Э. Сегре. В 1943-1946 годах изотопы астата были обнаружены в составе природных радиоактивных рядов. Астат является наиболее редким элементом среди всех, обнаруженных в природе. В основном его изотопы получают облучением металлических висмута или тория α-частицами высокой энергии с последующим отделением астата соосаждением, экстракцией, хроматографией или дистилляцией. Весьма перспективным для лечения заболеваний щитовидной железы является 211At. Имеются сведения, что радиобиологическое действие α-частиц астата на щитовидную железу в 2,8 раза сильнее β-частиц иода-131. При этом следует учесть, что с помощью иона роданида можно надёжно вывести астат из организма At - А ста́т

Радиоактивный переходный металл серебристо-серого цвета. Самый лёгкий элемент, не имеющий стабильных изотопов. Первый из синтезированных химических элементов. C развитием ядерной физики стало понятно, почему технеций никак не удаётся обнаружить в природе: в соответствии с правилом Маттауха-Щукарева этот элемент не имеет стабильных изотопов. Технеций был синтезирован из молибденовой мишени, облучённой на ускорителе-циклотроне ядрами дейтерия, 13 июля 1937 года К.Перрье и Э.Сегре в Национальной лаборатории им. Лоуренса в Беркли в США, а затем был выделен в чистом виде химически в Палермо в Италии. Широко используется в ядерной медицине для исследований мозга, сердца, щитовидной железы, легких, печени, желчного пузыря, почек, костей скелета, крови, а также для диагностики опухолей, так же соли технециевой кислоты HTcO4 являются самым эффективным ингибитором коррозии для железа и стали. Tc - Техне́ций

Тяжёлый хрупкий радиоактивный металл серебристо-белого цвета. В периодической таблице располагается в семействе актиноидов. Плутоний имеет семь аллотропных модификаций при определённых температурах и диапазонах давления. Для получения плутония применяется как обогащённый, так и природный уран. Широко используется в производстве ядерного оружия, топлива для ядерных реакторов гражданского и исследовательского назначения и в качестве источника энергии для космических аппаратов. Второй после нептуния искусственный элемент, полученный в микрограммовых количествах в конце 1940 г. в виде изотопа 238Pu. Первый искусственный химический элемент, производство которого началось в промышленных масштабах(в СССР с 1946 года в Челябинске-40 было создано несколько предприятий по производству оружейного урана и плутония). В первой ядерной бомбе в мире, созданной и испытанной в 1945 году в США, использовался плутониевый заряд. Для получения плутония применяется как обогащённый, так и природный уран. Общее количество плутония, хранящегося в мире во всевозможных формах, оценивалось в 2003 г. в 1239 т. В 2010 году эта цифра увеличилась до ~2000 т. Pu - Плуто́ний

Унунтрий (лат. Ununtrium , Uut) или эка-таллий - 113-й химический элемент III группы периодической системы, атомный номер 113, атомная масса , наиболее устойчивый изотоп 286Uut. Радиоактивен. В сентябре 2004 года о синтезе изотопа 113-го элемента 278Uut в количестве одного атома объявила группа из Японии. Они использовали реакцию слияния ядер цинка и висмута. В итоге за 8 лет японским учёным удалось зарегистрировать 3 события рождения атомов унунтрия: 23 июля 2004, 2 апреля 2005 и 12 августа 2012. Два атома ещё одного изотопа - 282Uut - были синтезированы в ОИЯИ в 2007 году в реакции 237Np + 48Ca → 282Uut + 3 1 n.Ещё два изотопа - 285Uut и 286Uut были синтезированы в ОИЯИ в 2010 году как продукты двух последовательных α-распадов унунсептия. Uut – Унунтрий

Ссылки на источники информации и изображений: http:// www.h2o.u-sonic.ru/table/tc.htm http://www.physel.ru/2-mainmenu-73/inmenu-75/721-s-211-. html http:// www.xumuk.ru/bse/2279.html http:// www.bibliotekar.ru/istoria-tehniki/16.htm http://ru.wikipedia.org/wiki/% D0%9F%D0%BB%D1%83%D1%82%D0%BE%D0%BD%D0%B8%D0%B9 http://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B4%D0%B8%D0%BE%D0%B0%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D1%8B%D0%B9_% D1%8D%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82 http://ru.wikipedia.org/wiki/% D0%A2%D0%B5%D1%85%D0%BD%D0%B5%D1%86%D0%B8%D0%B9 http://ru.wikipedia.org/wiki/% D0%9D%D0%B5%D0%BF%D1%82%D1%83%D0%BD%D0%B8%D0%B9 http://ru.wikipedia.org/wiki/% D0%A3%D0%BD%D1%83%D0%BD%D1%82%D1%80%D0%B8%D0%B9 http://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B4%D0%B8%D0%BE%D0%B0%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D1%8B%D0%B9_% D1%80%D0%B0%D1%81%D0%BF%D0%B0%D0%B4

Cлайд 1

Cлайд 2

Радиоактивное излучение Радиоактивность появились на земле со времени ее образования, и человек за всю историю развития своей цивилизации находился под влиянием естественных источников радиации. Земля подвержена радиационному фону, источниками которого служат излучения Солнца, космическое излучение, излучение от залегающих в Земле радиоактивных элементов.

Cлайд 3

Открытие Явление радиоактивности было открыто французским физиком А. Беккерелем 1 марта 1896 года при случайных обстоятельствах. Беккерель положил несколько фотографических пластинок в ящик своего стола и, чтобы на них не попал видимый свет, он придавил их куском соли урана. После проявления и исследования он заметил почернение пластинки, объяснив это излучением солью урана невидимых лучей. От солей урана Беккерель перешёл к чистому металлическому урану и отметил, что эффект испускания лучей усилился. Опыт Беккереля

Cлайд 4

Открытие Кусок соли урана без предварительного освещения испускал невидимые лучи, действовавшие на фотопластинку через непрозрачный экран. Беккерель немедленно ставит повторные опыты. Оказалось, что соли урана сами по себе без всякого внешнего воздействия испускают невидимые лучи, засвечивающие фотопластинку и проходящие через непрозрачные слои. 2 марта 1896 г Беккерель сообщил о своем открытии. Изображение фотопластинки Беккереля, которая была засвечена излучением солей урана. Ясно видна тень металлического мальтийского креста, помещённого между пластинкой и солью урана.

Cлайд 5

Cлайд 6

Открытие новых радиоактивных элементов Мария Склодовская-Кюри обнаружила излучения тория. Позже она с мужем открыла неизвестные ранее элементы: полоний, радий. В последствии было установлено, что все химические элементы с порядковым номером более 83 являются радиоактивными. Мария Склодовская-Кюри и Пьер Кюри
  • Древнегреческий философ Демокрит предположил, что тела состоят из мельчайших частиц - атомов (в переводе неделимые).
  • К концу XIX в. появились экспериментальные факты, доказывающие, что атом имеет сложную структуру.

Экспериментальные факты, доказывающие сложное строение атома

  • Электризация тел
  • Ток в металлах
  • Явление электролиза
  • Опыты Иоффе-Милликена

Открытие радиоактивности

в 1896 г. А. Беккерелем.

  • Уран самопроизвольно испускает невидимые лучи

Свойства лучей

  • Ионизируют воздух
  • Разрежают электроскоп
  • Не зависит от того, в какие соединения входит уран

83 – радиоактивны " width="640"

Исследования продолжили Мария и Пьер Кюри

  • торий 1898г,
  • полоний,
  • радий (лучистый)

z 83 – радиоактивны


  • - испускание ядрами некоторых элементов различных частиц: α -частиц; электронов; γ -квантов (α , β , γ -излучения).
  • - способность атомов некоторых радиоактивных элементов к самопроизвольному излучению

Состав радиоактивного излучения

1899 г Э. Резерфорд

В магнитном поле пучок радиоактивного излучения разделялся на три составляющие:

  • Положительно заряженные – α -частицы
  • Отрицательно заряженные – β - частицы
  • Нейтральная компонента излучения – γ -излучение

Все излучения обладают разной проникающей способностью

Задерживаются

  • Лист бумаги 0,1 мм – α -частицы
  • Алюминий 5 мм – α -частицы, β - частицы
  • Свинец 1 см – α -частицы, β - частицы, γ -излучение

Природа α -частиц

  • Ядра атомов гелия
  • m = 4 а.е.м.
  • q = 2 e
  • V = 10000-20000 км/с

Природа β -частиц

  • Электроны
  • V = 0,99с
  • с – скорость света

Природа γ -излучения

  • Электромагнитные волны (фотоны)
  • λ = 10 - 10 м
  • Ионизируют воздух
  • Действуют на фотопластинку
  • Не отклоняются магнитным полем


ИНТЕРЕСНО!

Грибы являются накопителями радиоактивных элементов, в частности цезия. Все виды исследованных грибов можно разделить на четыре группы: - слабо накапливающие - опенок осенний; - средне накапливающие - белый гриб, лисичка, подберезовик; - сильно накапливающие - груздь черный, сыроежка, зеленуха; - аккумуляторы радионуклидов - масленок, польский гриб.


К СОЖАЛЕНИЮ!

  • Жизнь обоих поколений ученых – физиков Кюри была в прямом смысле принесена ей в жертву науке. Мария Кюри, ее дочь Ирэн и зять Фредерик Жолио-Кюри умерли от лучевой болезни, возникшей в результате многолетней работы с радиоактивными веществами.
  • Вот что пишет М.П.Шаскольская: «В те далекие годы, на заре атомного века, первооткрыватели радия не знали о действии излучения. Радиоактивная пыль носилась в их лаборатории. Сами экспериментаторы спокойно брали руками препараты, держали их в кармане, не ведая о смертельной опасности. К счетчику Гейгера поднесен листок из блокнота Пьера Кюри (через 55 лет после того, как в блокноте велись записи!), и ровный гул сменяется шумом, чуть ли не грохотом. Листок излучает, листок как бы дышит радиоактивностью...»

Радиоактивный распад

  • - радиоактивное превращение ядер, происходящее самопроизвольно.

Ширина блока px

Скопируйте этот код и вставьте себе на сайт

Подписи к слайдам:

ИЗ ИСТОРИИ ОТКРЫТИЯ РАДИОАКТИВНОСТИ Учитель физики МОУ «Губинская СОШ» Константинова Елена Ивановна «История открытия радиоактивности»

  • Оглавление.
  • Введение……………………………………………………… 3
  • Глава первая....………………………………………………. 5
  • Глава вторая………………………………………………… 8
  • Глава третья………………………………………………... 11
  • Глава четвертая…………………………………………..... 19
  • Заключение..………………………………………………..... 21
  • Список литературы…………… ………………………….. 22
  • Приложение первое…….…………………………….……... 23
Этот урок посвящен истории открытия радиоактивности, то есть роли таких ученых, как немецкий физик, лауреат Нобелевской премии Вильгельм Конрад Рентген, А. Беккерель, супруги Мария и Пьер Кюри, Жолио Кюри, в становлении этой науки. Целью урока состоит в том, чтобы рассмотреть становление, первооснову таких наук, как радиология, ядерная физика, дозиметрия, определить роль тех или иных ученых в открытии этого замечательного явления. Для достижения этой цели автор поставил перед собой следующие задачи: Рассмотреть деятельность Вильгельма Рентгена как ученого, направившего остальных исследователей в данную область. Проследить за первоначальным открытием явления А. Беккерелем. Оценить огромный вклад супругов Кюри в накоплении и систематизации знаний о радиоактивности. Проанализировать открытие Жолио Кюри Открытие рентгеновских лучей Шел декабрь 1895 года. В.К. Рентген, работая в лаборатории с разрядной трубкой, около которой находился флюоресцирующий экран, покрытый платино-синеродистым барием, наблюдал свечение этого экрана. Закрыв трубку черным чехлом, собираясь закончить опыт, Рентген обнаружил опять-таки свечение экрана при разряде. "Флюоресценция" видна,- писал Рентген в своём первом сообщении 28 декабря 1895 г., - при достаточном затемнении и не зависит от того, подносить ли бумагу стороной, покрытой или не покрытой платино-синеродистым барием. Флюоресценция заметна ещё на расстоянии двух метров от трубки». Рентген не мог, однако, обнаружить ни отражения, ни преломления рентгеновских лучей. Однако он установил, что, если правильное отражение «не имеет места, всё же различные вещества по отношению к Х-лучам ведут себя так же, как и мутные среды по отношению к свету». Рентген установил важный факт рассеяния рентгеновских лучей веществом. Однако все его попытки обнаружить интерференцию рентгеновских лучей дали отрицательный результат. Отрицательный результат дали и попытки отклонения лучей магнитным полем. Отсюда Рентген сделал вывод, что Х-лучи не идентичны с катодными лучами, но возбуждаются ими в стеклянных стенках разрядной трубки. В заключение своего сообщения Рентген обсуждает вопрос о возможной природе открытых им лучей: У Рентгена были веские основания сомневаться в единой природе световых и рентгеновских лучей, и правильное решение вопроса выпало на долю физики XX в. Однако неудачная гипотеза Рентгена явилась вместе с тем свидетельством недостатка его теоретического мышления, склонного к одностороннему эмпиризму. Тонкий и искусный экспериментатор, Рентген не испытал склонности к поискам нового, как ни парадоксально это звучит по отношению к автору одного из крупнейших в жизни физики новых открытий. Открытие Рентгеном Х-лучей сыграло важную роль в учении о радиоактивности. Благодаря ему, после повторения вышеизложенных опытов, тысячи ученых всего мира стали исследовать эту область. Неслучайно позже Жолио Кюри скажет: «Не было бы Вильгельма Рентгена, наверное, не было бы меня…» Опыты Беккереля. В 1896 г. А. Беккерель открыл радиоактивность. Это открытие было непосредственно связано с открытием рентгеновских лучей. Беккерель, близко знакомый с исследованиями своего отца по люминесценции, обратил внимание на тот факт, что катодные лучи в опытах Рентгена производили при ударе одновременно и люминесценцию стекла и невидимые Х-лучи. Это привело его к идее, что всякая люминесценция сопровождается одновременно испусканием рентгеновских лучей Для проверки этой идеи Беккерель использовал большое количество люминесцирующих материалов, пока после ряда безуспешных опытов не поместил двух кристаллических пластинок урановой соли на фотографическую пластинку, завёрнутую в чёрную бумагу. Урановая соль подвергалась действию сильного солнечного света и через несколько часов экспозиции на фотографической пластинке было ясно обнаружено очертание кристаллов. Идея оказалась подтверждённой, солнечный свет возбуждал и люминесценцию соли урана и проникающую радиацию, действующую через бумагу на фотопластинку. Однако в дело вмешался случай. Приготовив опять пластинку с кристаллом урановой соли, Беккерель вновь вынес её на солнце. День был облачный, и опыт после короткой экспозиции пришлось прервать. В последующие дни солнце не показывалось, и Беккерель решил проявить пластинку, не надеясь, конечно, получить хорошего снимка. Но, к его удивлению, снимок получился резко очерченным. Как первоклассный исследователь, Беккерель не поколебался подвергнуть серьёзному испытанию свою теорию и начал исследовать действие солей урана на пластинку в темноте. Так обнаружилось - и это Беккерель доказал последовательными опытами,- что уран и его соединение непрерывно излучают без ослабления лучи, действующие на фотографическую пластинку и, как показал Беккерель, способные также разряжать электроскоп, т. е. создавать ионизацию. Открытие это вызвало сенсацию. Итак, 1896 год был ознаменован замечательным событием: наконец-то, после нескольких лет поисков, была открыта радиоактивность. Эта заслуга принадлежит великому ученому Беккерелю. Его открытие дало толчок развитию и совершенствованию этой науки. Исследования супругов Кюри. Молодая супруга Пьера Кюри Мария Склодовская-Кюри решила избрать темой своей докторской диссертации исследование нового явления. Исследование радиоактивности урановых соединений привело её к выводу, что радиоактивность является свойством, принадлежащим атомам урана, независимо от того, входят ли они в химическое соединение или нет. При этом она «измеряла напряжённость урановых лучей, пользуясь их свойством сообщать воздуху электропроводность». Этим ионизационным методом она и убедилась в атомной природе явления. Но и этот скромный результат показал Кюри, что радиоактивность, несмотря на её необычайный характер, не может быть свойством только одного элемента. «С этого времени представилась необходимость найти новый термин для определения нового свойства материи, проявленного элементами ураном и торием. Я предложила для этого название «радиоактивность», которое сделалось общепринятым». Внимание Кюри привлекли аномально большие значения радиоактивности некоторых руд. Чтобы выяснить, в чём дело, Кюри приготовила искусственный халколит из чистых веществ. Этот искусственный халколит, состоящий из азотнокислого уранила и раствора фосфорнокислой меди в фосфорной кислоте, после кристаллизации обладал «вполне нормальной активностью, отвечающей его составу: она в 2,5 раза менее активности урана». Начался поистине титанический труд супругов Кюри, проложивший путь человечеству к овладению атомной энергией. Новый метод химического анализа, разработанный Кюри, сыграл огромную роль в истории атомной физики, позволяя обнаруживать ничтожнейшие массы радиоактивного вещества

У Кюри не было даже

вытяжных шкафов. Что же касается сотрудников, то сначала им приходилось работать в одиночестве. В 1898 г. в работах по открытию радия им оказал временную помощь преподаватель промышленной школы физики и химии Ж. Бемон; позже они привлекли молодого химика А. Дебьерна, открывшего актиний; затем им помогали физики Ж. Саньяк и несколько молодых физиков. Напряженный героический труд стал приносить результаты радиоактивности.

В докладе конгрессу супруги Кюри охарактеризовали изложенную выше историю получения новых радиоактивных веществ, указав, что «мы называем радиоактивными вещества, испускающие лучи Беккереля». Затем они изложили метод измерения Кюри установили, что «радиоактивность представляет собой явление, измеримое довольно точно», а полученные цифры активности урановых соединений дали возможность высказать гипотезу о существовании весьма активных веществ, приведшую при своей проверке к открытию полония, радия и актиния. В докладе содержалось описание свойств новых элементов, спектр радия, приблизительная оценка его атомной массы, эффекты радиоактивного излучения. Что касается природы самих радиоактивных лучей, то для её исследования изучалось действие магнитного поля на лучи и проникающая способность лучей. П. Кюри показал, что излучение радия состоит из двух групп лучей: отклоняемых магнитным полем и не отклоняемых магнитным полем. Исследуя отклоняемые лучи, супруги Кюри в 1900 г. убедились, что «отклоняемые лучи β заряжены отрицательным электричеством». Можно принять, что и радий посылает в пространство отрицательно заряжённые частицы». Потребовалось исследовать ближе природу этих частиц. Первые определения e/m радиевых частиц принадлежали А. Беккерелю (1900). «Опыты г. Беккереля дали первое указание по этому вопросу. Для e/m получилось приближённое значение в 107 абсолютных электромагнитных единиц, для υ значение в 1,6 1010 см в секунду. Порядок этих чисел тот же, что для катодных лучей». «Точные исследования по этому вопросу принадлежат г. Кауфману (1901, 1902, 1903)... Из опытов г. Кауфмана следует, что для радиевых лучей, скорость которых значительно больше скорости катодных, отношение e/m убывает с увеличением скорости. В соответствии с работами Дж. Дж. Томсона и Тоунсенда мы должны принять, что представляющая луч движущаяся частица обладает зарядом, равным тому, который переносится водородным атомом при электролизе. Этот заряд для всех лучей одинаков. На этом основании следует заключить, что масса частиц тем больше, чем больше их скорость». Отклонение α-лучей в магнитном поле было получено Резерфордом в 1903 г. Резерфорду же принадлежат названия: -α, -β и –γ лучи. «1. Лучи α (альфа) обладают весьма малой проникающей способностью; они, по-видимому, составляют главную часть излучения. Для них харак-терна поглощаемость материей. Магнитное поле действует на них очень слабо, так что их сначала считали нечувствительными к его действию. Однако ж в сильном магнитном поле лучи а несколько отклоняются, отклонение происходит подобно тому, как для катодных лучей, лишь в обратном смысле...» 2. Лучи β (бэта) являются вообще мало поглощаемыми сравнительно с предыдущими. В магнитном поле они отклоняются таким же образом и в том же смысле, как лучи катодные. 3. Лучи γ (гамма) отличаются большой проникающей способностью; магнитное поле не действует на них; они сходны с лучами Рентгена». П. Кюри был первым человеком, испытавшим на себе разрушительное действие ядерной радиации. Он был и первым, кто доказал существование ядерной энергии и измерил её величину, выделяемую при радиоактивном распаде. В 1903 г. он вместе с Лабордом, нашёл что «соли радия являются источником теплоты, выделяющейся непрерывно и самопроизвольно» Пьер Кюри хорошо сознавал и громадные общественные последствия своего открытия. В том же году в своей нобелевской речи он сказал следующие пророческие слова, которые М. Кюри поставила эпиграфом к своей книге о нем: «Нетрудно предвидеть, что в преступных руках радий может сделаться крайне опасным, и вот возникает вопрос, действительно ли полезно для человечества знать секреты природы, действительно ли оно достаточно зрело для того, чтобы их правильно использовать, или это знание принесёт ему только вред. Опыты гг. Кюри привели прежде всего к открытию нового радиирующего металла, по своим химическим свойствам аналогичного висмуту, - металла, который г. Кюри назвал в честь родины своей супруги полонием (жена Кюри - полька, урождённая Склодовская); что дальнейшие их опыты привели к открытию второго сильно радиирующего нового металла - радия, весьма близкого по химическим свойствам к барию; что опыты Дебьерна послужили к открытию третьего радиирующего нового металла - актиния, аналогичного торию. Далее г. Кюри приступил к самой интересной части своего доклада - к опытам с радием. Перечисленные опыты завершились демонстрацией светимости радия. Стеклянная трубка, толщиной в карандаш и длиной в мизинец, наполненная до двух третей смесью хлористых радия и бария, излучает в течение двух лет настолько сильный свет, что вблизи него можно свободно читать. Последние слова звучат весьма наивно и свидетельствуют ещё об очень слабом знакомстве с радиоактивностью в начале XX в. Однако это слабое знание радиоактивных явлений не помешало возникнуть и развиться новой отрасли промышленности: радиевой промышленности. Эта промышленность была зачатком будущей атомной промышленности. . Роль супругов Кюри в истории открытия радиоактивности огромна. Они не только проделали титанический труд по исследованию радиоактивных свойств всех известных тогда минералов, но и провели первую попытку систематизации, выступая с докладами в Сорбоннском университете. Открытие искусственной радиоактивности. Однако оно явилось лишь одним из четырех великих открытий, сделанных в 1932 г., благодаря которым этот год был назван чудесным годом радиоактивности. Во-первых, помимо осуществления искусственной трансмутации был наконец-то обнаружен положительно заряженный электрон, или позитрон, в противоположность ему отрицательный электрон с тех пор получил название негатрон. Во-вторых, был открыт нейтрон - незаряженная элементарная частица с массой 1 (единица), которую можно рассматривать как нейтральное ядро, только без внешнего электрона. И наконец, был открыт изотоп водорода с массой 2, названный тяжелым водородом, или дейтерием, ядро которого, как считается, состоит из протона р и нейтрона п; подобно обычному водороду, его атом имеет один внешний электрон. В следующем, 1933, году произошло еще одно открытие, которое в некотором роде (во всяком случае, по мнению первых исследователей атомной энергии) представляло наибольший интерес. Речь идет об открытии искусственной радиоактивности. 1933-1934 гг. Для одного из первых исследователей этой проблемы - М. Кюри - данное открытие представляло еще особый интерес: оно было сделано ее дочерью и зятем. М. Кюри имела счастье за несколько месяцев до своей смерти передать зажженный ею факел членам своей семьи. Предмет, который она превратила из диковины в колосс, через четверть века находился на пороге того, чтобы обрести новую, плодотворную жизнь. Изучая упомянутый эффект Боте и Беккера, супруги Жолио обнаружили, что счетчик продолжал регистрировать импульсы даже после того, как был удален полоний, первоначально возбуждавший их. Эти импульсы прекращались точно таким же образом, как импульсы неустойчивого радиоэлемента с периодом полураспада 3 мин. Ученые установили, что алюминиевое окошко, через которое проходило α-излучение полония, само становилось радиоактивным благодаря генерируемым нейтронам; аналогичный эффект имел место для бора и магния, только наблюдались другие периоды полураспада (соответственно 11 и 2,5 мин). Реакции для алюминия и бора выглядели следующим образом: 2713А1(α,n) 3015Р*→3014Si+e+; 105B(α,n) 137N* →136C+e+, где звездочки обозначают, что ядра, полученные сначала, радиоактивны и претерпевают указанные стрелками вторичные превращения, в результате которых образуются хорошо известные устойчивые изотопы кремния и углерода. Что же касается магния, то все три его изотопа (с массовыми числами 24, 25 и 26) участвуют в этой реакции, генерируя нейтроны, протоны, позитроны и электроны; в результате образуются хорошо известные устойчивые изотопы алюминия и кремния (превращения носят комбинированный характер); 2412Мg(α, n)2714Si*→2713Al+е+; 2512Мg(α, р)2813Аl*→2814Si+e-; 2612Мg(α, p)2913Аl*→2914Si+e-. Более того, с помощью обычных химических методов, используемых в радиохимии, удалось достаточно легко идентифицировать неустойчивые радиоактивные фосфор и азот. Эти первые результаты демонстрировали богатство возможностей, открываемых вновь полученными данными. Радиоактивность сегодня Немного найдется на памяти человечества открытий, которые так круто меняли бы его судьбу, как открытие радиоактивных элементов. Более двух тысяч лет атом представляли как плотную мельчайшую неделимую частицу, и вдруг на заре XX столетия обнаружилось, что атомы способны делиться на части, распадаться, исчезать, переходить друг в друга. Оказалось, что извечная мечта алхимиков - превращение одних элементов в другие - осуществляется в природе само по себе. Это открытие по своему значению так велико, что наш XX век стали называть «атомным веком», эпохой атома, началом атомной эры. Трудно назвать сейчас область науки или техники, на которую не повлияло открытие явления радиоактивности. Оно раскрыло сложную внутреннюю структуру атома, а это привело к пересмотру коренных представлений об окружающем нас мире, к ломке устоявшейся, классической картины мира. Квантовая механика была создана специально для объяснения явлений, происходящих внутри атома. Это в свою очередь вызвало пересмотр и развитие математического аппарата физики, изменило лицо самой физики, химии и ряда других наук. Литература 1). А.И. Абрамов. Измерение "неизмеримого". Москва, «Атомиздат». 1977. 2). К.А. Гладков. Атом от А до Я. Москва, «Атомиздат». 1974. 3). Е. Кюри. Мария Кюри. Москва, «Атомиздат». 1976. 4). К.Н. Мухин. Занимательная ядерная физика. Москва, «Атомиздат». 1969. 5). М. Намиас. Ядерная энергия. Москва, «Атомиздат». 1955. 6). Н.Д.Пильчиков. Радий и радиоактивность (сборник «Успехи физики»). Санкт-Петербург. 1910. 7). В.К. Рентген. О новом роде лучей. Москва, «Просвещение». 1933. 8). М. Склодовская-Кюри. Радий и радиоактивность. Москва. 1905. 9). М. Склодовская-Кюри. Пьер Кюри. Москва, «Просвещение». 1924. 10). Ф. Содди. История атомной энергии. Москва, «Атомиздат» 1979. 11). A.Б. Шалинец, Г.Н. Фадеев. Радиоактивные элементы. Москва, «Просвещение». 1981.